- 实时数据流计算引擎Flink和Spark剖析
程小舰
flinkspark数据库kafkahadoop
在过去几年,业界的主流流计算引擎大多采用SparkStreaming,随着近两年Flink的快速发展,Flink的使用也越来越广泛。与此同时,Spark针对SparkStreaming的不足,也继而推出了新的流计算组件。本文旨在深入分析不同的流计算引擎的内在机制和功能特点,为流处理场景的选型提供参考。(DLab数据实验室w.x.公众号出品)一.SparkStreamingSparkStreamin
- Spark SQL架构及高级用法
Aurora_NeAr
sparksql架构
SparkSQL架构概述架构核心组件API层(用户接口)输入方式:SQL查询;DataFrame/DatasetAPI。统一性:所有接口最终转换为逻辑计划树(LogicalPlan),进入优化流程。编译器层(Catalyst优化器)核心引擎:基于规则的优化器(Rule-BasedOptimizer,RBO)与成本优化器(Cost-BasedOptimizer,CBO)。处理流程:阶段输入输出关键动
- Hive详解
一:Hive的历史价值1,Hive是Hadoop上的KillerApplication,Hive是Hadoop上的数据仓库,Hive同时兼具有数据仓库中的存储引擎和查询引擎的作用;而SparkSQL是一个更加出色和高级的查询引擎,所以在现在企业级应用中SparkSQL+Hive成为了业界使用大数据最为高效和流行的趋势。2,Hive是Facebook的推出,主要是为了让不动Java代码编程的人员也能
- 全面对比,深度解析 Ignite 与 Spark
xaio7biancheng
经常有人拿Ignite和Spark进行比较,然后搞不清两者的区别和联系。Ignite和Spark,如果笼统归类,都可以归于内存计算平台,然而两者功能上虽然有交集,并且Ignite也会对Spark进行支持,但是不管是从定位上,还是从功能上来说,它们差别巨大,适用领域有显著的区别。本文从各个方面对此进行对比分析,供各位技术选型参考。一、综述Ignite和Spark都为Apache的顶级开源项目,遵循A
- ignite redis_全面对比,深度解析 Ignite 与 Spark
weixin_39997696
igniteredis
经常有人拿Ignite和Spark进行比较,然后搞不清两者的区别和联系。Ignite和Spark,如果笼统归类,都可以归于内存计算平台,然而两者功能上虽然有交集,并且Ignite也会对Spark进行支持,但是不管是从定位上,还是从功能上来说,它们差别巨大,适用领域有显著的区别。本文从各个方面对此进行对比分析,供各位技术选型参考。一、综述Ignite和Spark都为Apache的顶级开源项目,遵循A
- 数据写入因为汉字引发的异常
qq_40841339
sparkhadoophivehivehadoop数据仓库
spark数据写hive表,发生查询分区异常问题异常:251071241926.49ERRORHive:MelaException(message.Exceptionthrownwhenexeculingquey.SELECTDISTINCT‘orgapache.hadop.hivemelastore.modelMpartionAs"NUCLEUSTYPE,AONCREATETIME,AO.LAS
- 语言合成模型Spark-TTS-0.5B学习笔记
tutgxuzyj
spark学习笔记
语言合成模型Spark-TTS-0.5B学习笔记语言合成是通过计算机技术将文字信息转换为自然流畅的语音输出,模拟人类语音。一、下载Spark-TTS-0.5B项目下载链接:https://github.com/SparkAudio/Spark-TTS.git注:需要科学网络。进入Spark-TTS文件夹,启动命令行窗口。创建Conda环境:condacreate-nsparktts-ypython
- Spark-TTS 使用
时间自由
AI人工智能
1.开发背景上一章节使用了MegaTTS3实现文本转语音,但是后面才发现只能使用官方的语言包,没看到克隆功能,所以重新找了一个可以克隆语音的开源模型。2.开发需求在Ubuntu下实现Spark-TTS的部署,实现官方语音克隆,根据自定义文本输出语音。3.开发环境Ubuntu20.04+Conda+Spark-TTS+RTX5060TI4.实现步骤4.1安装环境#创建环境python版本建议3.10
- Spark 的监控和性能调优高度依赖其内置的工具:【 Spark Web UI 和 Spark History Server】
csdn_tom_168
大数据spark大数据核心监控性能调优工具
Spark的监控和性能调优高度依赖其内置的SparkWebUI和SparkHistoryServer。它们是诊断作业性能瓶颈、资源利用率、错误原因和优化机会的最重要工具。一、SparkWebUI(DriverWebUI)当一个Spark应用程序(SparkContext)运行时,Driver进程会启动一个Web服务器,默认端口是4040(如果4040被占用,则尝试4041,4042等)。这是实时监
- 黑猴子的家:Spark RDD 编程进阶 之 广播变量
黑猴子的家
广播变量用来高效分发较大的对象。向所有工作节点发送一个较大的只读值,以供一个或多个Spark操作使用。比如,如果你的应用需要向所有节点发送一个较大的只读查询表,甚至是机器学习算法中的一个很大的特征向量,广播变量用起来都很顺手。传统方式下,Spark会自动把闭包中所有引用到的变量发送到工作节点上。虽然这很方便,但也很低效。原因有二:首先,默认的任务发射机制是专门为小任务进行优化的;其次,事实上你可能
- 开源项目ESP-SparkBot: ESP32-S3 大模型 AI 桌面机器人(复刻分享)
Qsm_lambda
机器人aiAI编程
一、前言ESP-SparkBot是官方大佬,乐鑫小铁匠开源在立创开源硬件平台的项目,此贴是用于分享与记录复刻过程。开源地址:(ESP-SparkBot-立创开源硬件平台(oshwhub.com))千人讨论Q群362367052二、项目简介ESP-SparkBot是⼀款基于ESP32-S3,集成语⾳交互、图像识别、遥控操作和多媒体功能于⼀体的智能设备。它不仅可以通过语⾳助⼿实现
- 数据科学与大数据技术专业的核心课程体系及发展路径全解析
YangYang9YangYan
大数据
CDA数据分析师证书含金量高,适应了未来数字化经济和AI发展趋势,难度不高,行业认可度高,对于找工作很有帮助。一、课程体系三维地图二、核心课程能力矩阵课程模块关键技能行业应用场景工具链分布式计算Spark调优用户行为日志分析AWSEMR/Databricks数据挖掘特征工程金融反欺诈模型Scikit-learn实时数据处理Flink窗口计算物联网设备监控Kafka+Flink数据治理元数据管理企业
- SpringBoot与ApacheSpark、MyBatis实战整合
KENYCHEN奉孝
spring实站大全java开发语言mybatisspring
基于SpringBoot和ApacheSpark开发的实例以下是基于SpringBoot和ApacheSpark整合开发的实用示例分类及关键点,涵盖数据处理、机器学习、实时分析等场景。每个示例均提供核心思路和代码片段(Markdown格式)。数据处理与ETL示例1:CSV文件读取与处理SparkSessionspark=SparkSession.builder().appName("CSVProc
- INVALID_COLUMN_NAME _AS_PATH
sparksql异常[INVALID_COLUMN_NAME_AS_PATH]ThedatasourceHiveFileFormatcannotsavethecolumnmin(birth_date)becauseitsnamecontainssomecharactersthatarenotallowedinfilepaths.Piease,useanallastorenameidemosqlSE
- Hive/Spark小文件解决方案(企业级实战)–参数和SQL优化
陆水A
大数据hivehadoopsparkpython
重点是后面的参数优化一、小文件的定义在Hadoop的上下文中,小文件的定义是相对于Hadoop分布式文件系统(HDFS)的块(Block)大小而言的。HDFS是Hadoop生态系统中的核心组件之一,它设计用于存储和处理大规模数据集。在HDFS中,数据被分割成多个块,每个块的大小是固定的,这个大小在Hadoop的不同版本和配置中可能有所不同,但常见的默认块大小包括128MB、256MB等。基于这个背
- Spark核心--RDD介绍
陆水A
大数据spark大数据分布式
一、RDD的介绍rdd弹性分布式数据集是spark框架自己封装的数据类型,用来管理内存数据数据集:rdd数据的格式类似Python中[]。hive中的该结构[]叫数组rdd提供算子(方法)方便开发人员进行调用计算数据在pysaprk中本质是定义一个rdd类型用来管理和计算内存数据分布式:rdd可以时使用多台机器的内存资源完成计算弹性:可以通过分区将数据分成多份234,每份数据对应一个task线程处
- C++与Hive、Spark、libhdfs、ACID交互技巧
KENYCHEN奉孝
C++开发语言springC++hivespark
C++与Hive交互的实例以下是C++与Hive交互的实例代码片段,涵盖连接、查询、数据操作等常见场景。假设使用libhdfs或thrift接口实现,部分示例需要结合Hive环境配置。基础连接与查询示例1:通过Thrift连接HiveServer2#include#include#includeusingnamespaceapache::thrift;usingnamespaceapache::h
- 全面的Spark学习资料合集:从基础到高级应用
本文还有配套的精品资源,点击获取简介:Spark是一个受到数据科学界青睐的大数据处理框架,以其高效、易用和可扩展性著称。本资料合集包括了Spark的基础学习材料、实战案例分析和高级应用实践,内容覆盖从Scala编程语言基础到Spark核心功能使用,再到大数据领域的实际应用。适合不同层次的学习者深入学习Spark,无论是初学者还是有经验的开发者,都能从中找到有价值的学习资源,帮助理解和掌握Spark
- 一文带你理清Spark Core调优的方方面面
即将秃头的Java程序员
前言本文的注意事项观看本文前,可以先百度搜索一下Spark程序的十大开发原则看看哦文章虽然很长,可并不是什么枯燥乏味的内容,而且都是面试时的干货(我觉得)可以结合PC端的目录食用,可以直接跳转到你想要的那部分内容图非常的重要,是文章中最有价值的部分。如果不是很重要的图一般不会亲手画,特别是本文2.2.6的图非常重要此文会很大程度上借鉴美团的文章分享内容和Spark官方资料去进行说明,也会结合笔者自
- AI系统Spark原理与代码实战案例讲解
AI天才研究院
AI大模型企业级应用开发实战AgenticAI实战AI人工智能与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
AI系统Spark原理与代码实战案例讲解作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming关键词:Spark、大数据处理、分布式计算、机器学习、数据挖掘、实时流处理1.背景介绍1.1问题的由来在大数据时代,海量数据的高效处理和分析已成为各行各业的迫切需求。传统的数据处理方式难以应对数据量激增、数据类型多样化以及实时性要求高等挑战。为了解决这些问题,Ap
- Spark大数据处理讲课笔记4.8 Spark SQL典型案例
酒城译痴无心剑
#Spark基础学习笔记(1)spark笔记sql
文章目录零、本讲学习目标一、使用SparkSQL实现词频统计(一)提出任务(二)实现任务1、准备数据文件2、创建Maven项目3、修改源程序目录4、添加依赖和设置源程序目录5、创建日志属性文件6、创建HDFS配置文件7、创建词频统计单例对象8、启动程序,查看结果9、词频统计数据转化流程图二、使用SparkSQL计算总分与平均分(一)提出任务(二)完成任务1、准备数据文件2、新建Maven项目3、修
- 手撕Spark之WordCount RDD执行流程
啊Abu
Sparkspark
手撕Spark之WordCountRDD执行流程文章目录手撕Spark之WordCountRDD执行流程写在前面软件环境代码过程分析写在前面一个Spark程序在初始化的时候会构造DAGScheduler、TaskSchedulerImpl、MapOutTrackerMaster等对象,DAGScheduler主要负责生成DAG、启动Job、提交Stage等操作,TaskSchedulerImpl主
- 【大数据学习 | Spark-Core】RDD的概念与Spark任务的执行流程
Vez'nan的幸福生活
大数据sparkoraclesqljson
1.RDD的设计背景在实际应用中,存在许多迭代式计算,这些应用场景的共同之处是,不同计算阶段之间会重用中间结果,即一个阶段的输出结果会作为下一个阶段的输入。但是,目前的MapReduce框架都是把中间结果写入到HDFS中,带来了大量的数据复制、磁盘IO和序列化开销。显然,如果能将结果保存在内存当中,就可以大量减少IO。RDD就是为了满足这种需求而出现的,它提供了一个抽象的数据架构,我们不必担心底层
- 第84课:StreamingContext、DStream、Receiver深度剖析
chengnidi5193
StreamingContext、DStream、Receiver深度剖析编写人:姜伟、唐陈昊、龚湄燕本课分成四部分讲解,第一部分对StreamingContext功能及源码剖析;第二部分对DStream功能及源码剖析;第三部分对Receiver功能及源码剖析;最后一部分将StreamingContext、DStream、Receiver结合起来分析其流程。1、通过SparkStreaming对象
- Hbase BulkLoad用法
kikiki2
要导入大量数据,Hbase的BulkLoad是必不可少的,在导入历史数据的时候,我们一般会选择使用BulkLoad方式,我们还可以借助Spark的计算能力将数据快速地导入。使用方法导入依赖包compilegroup:'org.apache.spark',name:'spark-sql_2.11',version:'2.3.1.3.0.0.0-1634'compilegroup:'org.apach
- Python 大数据分析(二)
绝不原创的飞龙
默认分类默认分类
原文:annas-archive.org/md5/5058e6970bd2a8d818ecc1f7f8fef74a译者:飞龙协议:CCBY-NC-SA4.0第六章:第五章处理缺失值和相关性分析学习目标到本章结束时,你将能够:使用PySpark检测和处理数据中的缺失值描述变量之间的相关性计算PySpark中两个或多个变量之间的相关性使用PySpark创建相关矩阵在本章中,我们将使用Iris数据集处理
- DolphinScheduler 如何高效调度 AnalyticDB on Spark 作业?
DolphinScheduler社区
spark大数据分布式
DolphinScheduler是一个分布式易扩展的可视化DAG工作流任务调度开源系统,能高效地执行和管理大数据流程。用户可以在DolphinSchedulerWeb界面轻松创建、编辑和调度云原生数据仓库AnalyticDBMySQL版的Spark作业。前提条件AnalyticDBforMySQL集群的产品系列为企业版、基础版或湖仓版。AnalyticDBforMySQL集群中已创建Job型资源组
- 【Spark征服之路-3.7-Spark-SQL核心编程(六)】
qq_46394486
sparksqlajax
数据加载与保存:通用方式:SparkSQL提供了通用的保存数据和数据加载的方式。这里的通用指的是使用相同的API,根据不同的参数读取和保存不同格式的数据,SparkSQL默认读取和保存的文件格式为parquet加载数据:spark.read.load是加载数据的通用方法。如果读取不同格式的数据,可以对不同的数据格式进行设定。spark.read.format("…")[.option("…")].
- 深入解析 Spark:关键问题与答案汇总
※尘
sqlhivespark
在大数据处理领域,Spark凭借其高效的计算能力和丰富的功能,成为了众多开发者和企业的首选框架。然而,在使用Spark的过程中,我们会遇到各种各样的问题,从性能优化到算子使用等。本文将围绕Spark的一些核心问题进行详细解答,帮助大家更好地理解和运用Spark。Spark性能优化策略Spark性能优化是提升作业执行效率的关键,主要可以从以下几个方面入手:首先,资源配置优化至关重要。合理设置Exec
- spark on yarn
不辉放弃
pyspark大数据开发
SparkonYARN是指将Spark应用程序运行在HadoopYARN集群上,借助YARN的资源管理和调度能力来管理Spark的计算资源。这种模式能充分利用现有Hadoop集群资源,简化集群管理,是企业中常用的Spark部署方式。核心角色•Spark应用:包含Driver进程和Executor进程。Driver负责任务调度、逻辑处理;Executor负责执行具体任务并存储数据。•YARN组件:◦
- 辗转相处求最大公约数
沐刃青蛟
C++漏洞
无言面对”江东父老“了,接触编程一年了,今天发现还不会辗转相除法求最大公约数。惭愧惭愧!
为此,总结一下以方便日后忘了好查找。
1.输入要比较的两个数a,b
忽略:2.比较大小(因为后面要的是大的数对小的数做%操作)
3.辗转相除(用循环不停的取余,如a%b,直至b=0)
4.最后的a为两数的最大公约数
&
- F5负载均衡会话保持技术及原理技术白皮书
bijian1013
F5负载均衡
一.什么是会话保持? 在大多数电子商务的应用系统或者需要进行用户身份认证的在线系统中,一个客户与服务器经常经过好几次的交互过程才能完成一笔交易或者是一个请求的完成。由于这几次交互过程是密切相关的,服务器在进行这些交互过程的某一个交互步骤时,往往需要了解上一次交互过程的处理结果,或者上几步的交互过程结果,服务器进行下
- Object.equals方法:重载还是覆盖
Cwind
javagenericsoverrideoverload
本文译自StackOverflow上对此问题的讨论。
原问题链接
在阅读Joshua Bloch的《Effective Java(第二版)》第8条“覆盖equals时请遵守通用约定”时对如下论述有疑问:
“不要将equals声明中的Object对象替换为其他的类型。程序员编写出下面这样的equals方法并不鲜见,这会使程序员花上数个小时都搞不清它为什么不能正常工作:”
pu
- 初始线程
15700786134
暑假学习的第一课是讲线程,任务是是界面上的一条线运动起来。
既然是在界面上,那必定得先有一个界面,所以第一步就是,自己的类继承JAVA中的JFrame,在新建的类中写一个界面,代码如下:
public class ShapeFr
- Linux的tcpdump
被触发
tcpdump
用简单的话来定义tcpdump,就是:dump the traffic on a network,根据使用者的定义对网络上的数据包进行截获的包分析工具。 tcpdump可以将网络中传送的数据包的“头”完全截获下来提供分析。它支 持针对网络层、协议、主机、网络或端口的过滤,并提供and、or、not等逻辑语句来帮助你去掉无用的信息。
实用命令实例
默认启动
tcpdump
普通情况下,直
- 安卓程序listview优化后还是卡顿
肆无忌惮_
ListView
最近用eclipse开发一个安卓app,listview使用baseadapter,里面有一个ImageView和两个TextView。使用了Holder内部类进行优化了还是很卡顿。后来发现是图片资源的问题。把一张分辨率高的图片放在了drawable-mdpi文件夹下,当我在每个item中显示,他都要进行缩放,导致很卡顿。解决办法是把这个高分辨率图片放到drawable-xxhdpi下。
&nb
- 扩展easyUI tab控件,添加加载遮罩效果
知了ing
jquery
(function () {
$.extend($.fn.tabs.methods, {
//显示遮罩
loading: function (jq, msg) {
return jq.each(function () {
var panel = $(this).tabs(&
- gradle上传jar到nexus
矮蛋蛋
gradle
原文地址:
https://docs.gradle.org/current/userguide/maven_plugin.html
configurations {
deployerJars
}
dependencies {
deployerJars "org.apache.maven.wagon
- 千万条数据外网导入数据库的解决方案。
alleni123
sqlmysql
从某网上爬了数千万的数据,存在文本中。
然后要导入mysql数据库。
悲剧的是数据库和我存数据的服务器不在一个内网里面。。
ping了一下, 19ms的延迟。
于是下面的代码是没用的。
ps = con.prepareStatement(sql);
ps.setString(1, info.getYear())............;
ps.exec
- JAVA IO InputStreamReader和OutputStreamReader
百合不是茶
JAVA.io操作 字符流
这是第三篇关于java.io的文章了,从开始对io的不了解-->熟悉--->模糊,是这几天来对文件操作中最大的感受,本来自己认为的熟悉了的,刚刚在回想起前面学的好像又不是很清晰了,模糊对我现在或许是最好的鼓励 我会更加的去学 加油!:
JAVA的API提供了另外一种数据保存途径,使用字符流来保存的,字符流只能保存字符形式的流
字节流和字符的难点:a,怎么将读到的数据
- MO、MT解读
bijian1013
GSM
MO= Mobile originate,上行,即用户上发给SP的信息。MT= Mobile Terminate,下行,即SP端下发给用户的信息;
上行:mo提交短信到短信中心下行:mt短信中心向特定的用户转发短信,你的短信是这样的,你所提交的短信,投递的地址是短信中心。短信中心收到你的短信后,存储转发,转发的时候就会根据你填写的接收方号码寻找路由,下发。在彩信领域是一样的道理。下行业务:由SP
- 五个JavaScript基础问题
bijian1013
JavaScriptcallapplythisHoisting
下面是五个关于前端相关的基础问题,但却很能体现JavaScript的基本功底。
问题1:Scope作用范围
考虑下面的代码:
(function() {
var a = b = 5;
})();
console.log(b);
什么会被打印在控制台上?
回答:
上面的代码会打印 5。
&nbs
- 【Thrift二】Thrift Hello World
bit1129
Hello world
本篇,不考虑细节问题和为什么,先照葫芦画瓢写一个Thrift版本的Hello World,了解Thrift RPC服务开发的基本流程
1. 在Intellij中创建一个Maven模块,加入对Thrift的依赖,同时还要加上slf4j依赖,如果不加slf4j依赖,在后面启动Thrift Server时会报错
<dependency>
- 【Avro一】Avro入门
bit1129
入门
本文的目的主要是总结下基于Avro Schema代码生成,然后进行序列化和反序列化开发的基本流程。需要指出的是,Avro并不要求一定得根据Schema文件生成代码,这对于动态类型语言很有用。
1. 添加Maven依赖
<?xml version="1.0" encoding="UTF-8"?>
<proj
- 安装nginx+ngx_lua支持WAF防护功能
ronin47
需要的软件:LuaJIT-2.0.0.tar.gz nginx-1.4.4.tar.gz &nb
- java-5.查找最小的K个元素-使用最大堆
bylijinnan
java
import java.util.Arrays;
import java.util.Random;
public class MinKElement {
/**
* 5.最小的K个元素
* I would like to use MaxHeap.
* using QuickSort is also OK
*/
public static void
- TCP的TIME-WAIT
bylijinnan
socket
原文连接:
http://vincent.bernat.im/en/blog/2014-tcp-time-wait-state-linux.html
以下为对原文的阅读笔记
说明:
主动关闭的一方称为local end,被动关闭的一方称为remote end
本地IP、本地端口、远端IP、远端端口这一“四元组”称为quadruplet,也称为socket
1、TIME_WA
- jquery ajax 序列化表单
coder_xpf
Jquery ajax 序列化
checkbox 如果不设定值,默认选中值为on;设定值之后,选中则为设定的值
<input type="checkbox" name="favor" id="favor" checked="checked"/>
$("#favor&quo
- Apache集群乱码和最高并发控制
cuisuqiang
apachetomcat并发集群乱码
都知道如果使用Http访问,那么在Connector中增加URIEncoding即可,其实使用AJP时也一样,增加useBodyEncodingForURI和URIEncoding即可。
最大连接数也是一样的,增加maxThreads属性即可,如下,配置如下:
<Connector maxThreads="300" port="8019" prot
- websocket
dalan_123
websocket
一、低延迟的客户端-服务器 和 服务器-客户端的连接
很多时候所谓的http的请求、响应的模式,都是客户端加载一个网页,直到用户在进行下一次点击的时候,什么都不会发生。并且所有的http的通信都是客户端控制的,这时候就需要用户的互动或定期轮训的,以便从服务器端加载新的数据。
通常采用的技术比如推送和comet(使用http长连接、无需安装浏览器安装插件的两种方式:基于ajax的长
- 菜鸟分析网络执法官
dcj3sjt126com
网络
最近在论坛上看到很多贴子在讨论网络执法官的问题。菜鸟我正好知道这回事情.人道"人之患好为人师" 手里忍不住,就写点东西吧. 我也很忙.又没有MM,又没有MONEY....晕倒有点跑题.
OK,闲话少说,切如正题. 要了解网络执法官的原理. 就要先了解局域网的通信的原理.
前面我们看到了.在以太网上传输的都是具有以太网头的数据包. 
- Android相对布局属性全集
dcj3sjt126com
android
RelativeLayout布局android:layout_marginTop="25dip" //顶部距离android:gravity="left" //空间布局位置android:layout_marginLeft="15dip //距离左边距
// 相对于给定ID控件android:layout_above 将该控件的底部置于给定ID的
- Tomcat内存设置详解
eksliang
jvmtomcattomcat内存设置
Java内存溢出详解
一、常见的Java内存溢出有以下三种:
1. java.lang.OutOfMemoryError: Java heap space ----JVM Heap(堆)溢出JVM在启动的时候会自动设置JVM Heap的值,其初始空间(即-Xms)是物理内存的1/64,最大空间(-Xmx)不可超过物理内存。
可以利用JVM提
- Java6 JVM参数选项
greatwqs
javaHotSpotjvmjvm参数JVM Options
Java 6 JVM参数选项大全(中文版)
作者:Ken Wu
Email:
[email protected]
转载本文档请注明原文链接 http://kenwublog.com/docs/java6-jvm-options-chinese-edition.htm!
本文是基于最新的SUN官方文档Java SE 6 Hotspot VM Opt
- weblogic创建JMC
i5land
weblogicjms
进入 weblogic控制太
1.创建持久化存储
--Services--Persistant Stores--new--Create FileStores--name随便起--target默认--Directory写入在本机建立的文件夹的路径--ok
2.创建JMS服务器
--Services--Messaging--JMS Servers--new--name随便起--Pers
- 基于 DHT 网络的磁力链接和BT种子的搜索引擎架构
justjavac
DHT
上周开发了一个磁力链接和 BT 种子的搜索引擎 {Magnet & Torrent},本文简单介绍一下主要的系统功能和用到的技术。
系统包括几个独立的部分:
使用 Python 的 Scrapy 框架开发的网络爬虫,用来爬取磁力链接和种子;
使用 PHP CI 框架开发的简易网站;
搜索引擎目前直接使用的 MySQL,将来可以考虑使
- sql添加、删除表中的列
macroli
sql
添加没有默认值:alter table Test add BazaarType char(1)
有默认值的添加列:alter table Test add BazaarType char(1) default(0)
删除没有默认值的列:alter table Test drop COLUMN BazaarType
删除有默认值的列:先删除约束(默认值)alter table Test DRO
- PHP中二维数组的排序方法
abc123456789cba
排序二维数组PHP
<?php/*** @package BugFree* @version $Id: FunctionsMain.inc.php,v 1.32 2005/09/24 11:38:37 wwccss Exp $*** Sort an two-dimension array by some level
- hive优化之------控制hive任务中的map数和reduce数
superlxw1234
hivehive优化
一、 控制hive任务中的map数: 1. 通常情况下,作业会通过input的目录产生一个或者多个map任务。 主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M, 可在hive中通过set dfs.block.size;命令查看到,该参数不能自定义修改);2. 
- Spring Boot 1.2.4 发布
wiselyman
spring boot
Spring Boot 1.2.4已于6.4日发布,repo.spring.io and Maven Central可以下载(推荐使用maven或者gradle构建下载)。
这是一个维护版本,包含了一些修复small number of fixes,建议所有的用户升级。
Spring Boot 1.3的第一个里程碑版本将在几天后发布,包含许多