leetcode 二分法、LRU Cache、Clone Graph 无向图的复制

1.搜索一个范围

 

Given a sorted array of integers, find the starting and ending position of a given target value.

Your algorithm's runtime complexity must be in the order of O(log n).

If the target is not found in the array, return [-1, -1].

For example,
Given [5, 7, 7, 8, 8, 10] and target value 8,
return [3, 4].

class Solution {
public:
    vector searchRange(vector& nums, int target) {
        vector res(2, -1);
        int left = 0, right = nums.size() - 1;
        while (left < right) {
            int mid = left + (right - left) / 2;
            if (nums[mid] < target) left = mid + 1;
            else right = mid;
        }
        if (nums[right] != target) return res;
        res[0] = right;
        right = nums.size();
        while (left < right) {
            int mid = left + (right - left) / 2;
            if (nums[mid] <= target) left = mid + 1;
            else right= mid;
        }
        res[1] = left - 1;
        return res;
    }
};
class Solution {
public:
	vector searchRange(vector a, int x) {
		int n = a.size() - 1;

		vector res(2, -1);
		if (n < 1) return res;
		int left = 0, right = n;
		while (left < right) {

			int mid = left + (right - left) / 2;

			if (x > a[mid])
			{
				left = mid + 1;
			}
			else 
			{
				right = mid;
			}
		}
		res[0] = left;
		right = n;
		while (left < right) {

			int mid = left + (right - left) / 2;

			if (x >= a[mid])
			{
				left = mid + 1;
			}
			else
			{
				right = mid;
			}
		}
		res[1] = left -1;
		return res;
	}
};

2.Clone Graph 无向图的复制

Clone an undirected graph. Each node in the graph contains a label and a list of its neighbors.
OJ's undirected graph serialization:

Nodes are labeled uniquely.

We use # as a separator for each node, and , as a separator for node label and each neighbor of the node.

 

As an example, consider the serialized graph {0,1,2#1,2#2,2}.

The graph has a total of three nodes, and therefore contains three parts as separated by #.

  1. First node is labeled as 0. Connect node 0 to both nodes 1 and 2.
  2. Second node is labeled as 1. Connect node 1 to node 2.
  3. Third node is labeled as 2. Connect node 2 to node 2 (itself), thus forming a self-cycle.

Visually, the graph looks like the following:

       1
      / \
     /   \
    0 --- 2
         / \
         \_/

这道无向图的复制问题和之前的拷贝链表有些类似,那道题的难点是如何处理每个节点的随机指针,这道题目的难点在于如何处理每个节点的neighbors,由于在深度拷贝每一个节点后,还要将其所有neighbors放到一个vector中,而如何避免重复拷贝呢?这道题好就好在所有节点值不同,所以我们可以使用哈希表来对应节点值和新生成的节点。对于图的遍历的两大基本方法是深度优先搜索DFS和广度优先搜索BFS,此题的两种解法可参见网友爱做饭的小莹子的博客,这里我们使用深度优先搜索DFS来解答此题,代码如下:

/**
 * Definition for undirected graph.
 * struct UndirectedGraphNode {
 *     int label;
 *     vector neighbors;
 *     UndirectedGraphNode(int x) : label(x) {};
 * };
 */
class Solution {
public:
    UndirectedGraphNode *cloneGraph(UndirectedGraphNode *node) {
        unordered_map umap;
        return clone(node, umap);
    }
    UndirectedGraphNode *clone(UndirectedGraphNode *node, unordered_map &umap) {
        if (!node) return node;
        if (umap.count(node->label)) return umap[node->label];
        UndirectedGraphNode *newNode = new UndirectedGraphNode(node->label);
        umap[node->label] = newNode;
        for (int i = 0; i < node->neighbors.size(); ++i) {
            (newNode->neighbors).push_back(clone(node->neighbors[i], umap));
        }
        return newNode;
    } 
};

3.LRU cache

Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get and put.

get(key) - Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1.
put(key, value) - Set or insert the value if the key is not already present. When the cache reached its capacity, it should invalidate the least recently used item before inserting a new item.

Follow up:
Could you do both operations in O(1) time complexity?

Example:

LRUCache cache = new LRUCache( 2 /* capacity */ );

cache.put(1, 1);
cache.put(2, 2);
cache.get(1);       // returns 1
cache.put(3, 3);    // evicts key 2
cache.get(2);       // returns -1 (not found)
cache.put(4, 4);    // evicts key 1
cache.get(1);       // returns -1 (not found)
cache.get(3);       // returns 3
cache.get(4);       // returns 4

这道题让我们实现一个LRU缓存器,LRU是Least Recently Used的简写,就是最近最少使用的意思。那么这个缓存器主要有两个成员函数,get和put,其中get函数是通过输入key来获得value,如果成功获得后,这对(key, value)升至缓存器中最常用的位置(顶部),如果key不存在,则返回-1。而put函数是插入一对新的(key, value),如果原缓存器中有该key,则需要先删除掉原有的,将新的插入到缓存器的顶部。如果不存在,则直接插入到顶部。若加入新的值后缓存器超过了容量,则需要删掉一个最不常用的值,也就是底部的值。具体实现时我们需要三个私有变量,cap, l和m,其中cap是缓存器的容量大小,l是保存缓存器内容的列表,m是HashMap,保存关键值key和缓存器各项的迭代器之间映射,方便我们以O(1)的时间内找到目标项。

然后我们再来看get和put如何实现,get相对简单些,我们在m中查找给定的key,若不存在直接返回-1。如果存在则将此项移到顶部,这里我们使用C++ STL中的函数splice,专门移动链表中的一个或若干个结点到某个特定的位置,这里我们就只移动key对应的迭代器到列表的开头,然后返回value。这里再解释一下为啥HashMap不用更新,因为HashMap的建立的是关键值key和缓存列表中的迭代器之间的映射,get函数是查询函数,如果关键值key不在HashMap,那么不需要更新。如果在,我们需要更新的是该key-value对在缓存列表中的位置,而HashMap中还是这个key跟键值对儿的迭代器之间的映射,并不需要更新什么。

对于put,我们也是现在m中查找给定的key,如果存在就删掉原有项,并在顶部插入新来项,然后判断是否溢出,若溢出则删掉底部项(最不常用项)。代码如下:

class LRUCache{
public:
    LRUCache(int capacity) {
        cap = capacity;
    }
    
    int get(int key) {
        auto it = m.find(key);
        if (it == m.end()) return -1;
        l.splice(l.begin(), l, it->second);
        return it->second->second;
    }
    
    void put(int key, int value) {
        auto it = m.find(key);
        if (it != m.end()) l.erase(it->second);
        l.push_front(make_pair(key, value));
        m[key] = l.begin();
        if (m.size() > cap) {
            int k = l.rbegin()->first;
            l.pop_back();
            m.erase(k);
        }
    }
    
private:
    int cap;
    list> l;
    unordered_map>::iterator> m;
};

 

你可能感兴趣的:(leetcode)