超过 150 个最佳机器学习,NLP 和 Python教程

作者:chen_h
微信号 & QQ:862251340
微信公众号:coderpai
简书地址:http://www.jianshu.com/p/2be349a89a12


超过 150 个最佳机器学习,NLP 和 Python教程_第1张图片

我把这篇文章分为四个部分:机器学习,NLP,Python 和 数学。我在每一部分都会包含一些关键主题,但是网上资料太广泛了,所以我不可能包括每一个可能的主题。

如果你发现好的教程,请告诉我。在这篇文章中,我把每个主题的教程数量都是控制在五到六个,这些精选出来的教程都是非常重要的。每一个链接都会链接到别的链接,从而导致很多新的教程。

Machine Learning

  • Machine Learning is Fun! (medium.com/@ageitgey)
  • Machine Learning Crash Course: Part I, Part II, Part III (Machine Learning at Berkeley)
  • An Introduction to Machine Learning Theory and Its Applications: A Visual Tutorial with Examples (toptal.com)
  • A Gentle Guide to Machine Learning (monkeylearn.com)
  • Which machine learning algorithm should I use? (sas.com)

Activation and Loss Functions

  • Sigmoid neurons (neuralnetworksanddeeplearning.com)
  • What is the role of the activation function in a neural network? (quora.com)
  • Comprehensive list of activation functions in neural networks with pros/cons(stats.stackexchange.com)
  • Activation functions and it’s types-Which is better? (medium.com)
  • Making Sense of Logarithmic Loss (exegetic.biz)
  • Loss Functions (Stanford CS231n)
  • L1 vs. L2 Loss function (rishy.github.io)
  • The cross-entropy cost function (neuralnetworksanddeeplearning.com)

Bias

  • Role of Bias in Neural Networks (stackoverflow.com)
  • Bias Nodes in Neural Networks (makeyourownneuralnetwork.blogspot.com)
  • What is bias in artificial neural network? (quora.com)

Perceptron

  • Perceptrons (neuralnetworksanddeeplearning.com)
  • The Perception (natureofcode.com)
  • Single-layer Neural Networks (Perceptrons) (dcu.ie)
  • From Perceptrons to Deep Networks (toptal.com)

Regression

  • Introduction to linear regression analysis (duke.edu)
  • Linear Regression (ufldl.stanford.edu)
  • Linear Regression (readthedocs.io)
  • Logistic Regression (readthedocs.io)
  • Simple Linear Regression Tutorial for Machine Learning(machinelearningmastery.com)
  • Logistic Regression Tutorial for Machine Learning(machinelearningmastery.com)
  • Softmax Regression (ufldl.stanford.edu)

Gradient Descent

  • Learning with gradient descent (neuralnetworksanddeeplearning.com)
  • Gradient Descent (iamtrask.github.io)
  • How to understand Gradient Descent algorithm (kdnuggets.com)
  • An overview of gradient descent optimization algorithms(sebastianruder.com)
  • Optimization: Stochastic Gradient Descent (Stanford CS231n)

Generative Learning

  • Generative Learning Algorithms (Stanford CS229)
  • A practical explanation of a Naive Bayes classifier (monkeylearn.com)

Support Vector Machines

  • An introduction to Support Vector Machines (SVM) (monkeylearn.com)
  • Support Vector Machines (Stanford CS229)
  • Linear classification: Support Vector Machine, Softmax (Stanford 231n)

Backpropagation

  • Yes you should understand backprop (medium.com/@karpathy)
  • Can you give a visual explanation for the back propagation algorithm for neural networks? (github.com/rasbt)
  • How the backpropagation algorithm works(neuralnetworksanddeeplearning.com)
  • Backpropagation Through Time and Vanishing Gradients (wildml.com)
  • A Gentle Introduction to Backpropagation Through Time(machinelearningmastery.com)
  • Backpropagation, Intuitions (Stanford CS231n)

Deep Learning

  • Deep Learning in a Nutshell (nikhilbuduma.com)
  • A Tutorial on Deep Learning (Quoc V. Le)
  • What is Deep Learning? (machinelearningmastery.com)
  • What’s the Difference Between Artificial Intelligence, Machine Learning, and Deep Learning? (nvidia.com)

Optimization and Dimensionality Reduction

  • Seven Techniques for Data Dimensionality Reduction (knime.org)
  • Principal components analysis (Stanford CS229)
  • Dropout: A simple way to improve neural networks (Hinton @ NIPS 2012)
  • How to train your Deep Neural Network (rishy.github.io)

Long Short Term Memory(LSTM)

  • A Gentle Introduction to Long Short-Term Memory Networks by the Experts(machinelearningmastery.com)
  • Understanding LSTM Networks (colah.github.io)
  • Exploring LSTMs (echen.me)
  • Anyone Can Learn To Code an LSTM-RNN in Python (iamtrask.github.io)

Convolutional Neural Networks (CNNs)

  • Introducing convolutional networks (neuralnetworksanddeeplearning.com)
  • Deep Learning and Convolutional Neural Networks(medium.com/@ageitgey)
  • Conv Nets: A Modular Perspective (colah.github.io)
  • Understanding Convolutions (colah.github.io)

Recurrent Neural Nets (RNNs)

  • Recurrent Neural Networks Tutorial (wildml.com)
  • Attention and Augmented Recurrent Neural Networks (distill.pub)
  • The Unreasonable Effectiveness of Recurrent Neural Networks(karpathy.github.io)
  • A Deep Dive into Recurrent Neural Nets (nikhilbuduma.com)

Reinforcement Learning

  • Simple Beginner’s guide to Reinforcement Learning & its implementation(analyticsvidhya.com)
  • A Tutorial for Reinforcement Learning (mst.edu)
  • Learning Reinforcement Learning (wildml.com)
  • Deep Reinforcement Learning: Pong from Pixels (karpathy.github.io)

Generative Adversarial Networks (GANs)

  • What’s a Generative Adversarial Network? (nvidia.com)
  • Abusing Generative Adversarial Networks to Make 8-bit Pixel Art(medium.com/@ageitgey)
  • An introduction to Generative Adversarial Networks (with code in TensorFlow) (aylien.com)
  • Generative Adversarial Networks for Beginners (oreilly.com)

Multi-task Learning

  • An Overview of Multi-Task Learning in Deep Neural Networks(sebastianruder.com)

NLP

  • A Primer on Neural Network Models for Natural Language Processing (Yoav Goldberg)
  • The Definitive Guide to Natural Language Processing (monkeylearn.com)
  • Introduction to Natural Language Processing (algorithmia.com)
  • Natural Language Processing Tutorial (vikparuchuri.com)
  • Natural Language Processing (almost) from Scratch (arxiv.org)

Deep Learning and NLP

  • Deep Learning applied to NLP (arxiv.org)
  • Deep Learning for NLP (without Magic) (Richard Socher)
  • Understanding Convolutional Neural Networks for NLP (wildml.com)
  • Deep Learning, NLP, and Representations (colah.github.io)
  • Embed, encode, attend, predict: The new deep learning formula for state-of-the-art NLP models (explosion.ai)
  • Understanding Natural Language with Deep Neural Networks Using Torch(nvidia.com)
  • Deep Learning for NLP with Pytorch (pytorich.org)

Word Vectors

  • Bag of Words Meets Bags of Popcorn (kaggle.com)
  • On word embeddings Part I, Part II, Part III (sebastianruder.com)
  • The amazing power of word vectors (acolyer.org)
  • word2vec Parameter Learning Explained (arxiv.org)
  • Word2Vec Tutorial — The Skip-Gram Model, Negative Sampling(mccormickml.com)

Encoder-Decoder

  • Attention and Memory in Deep Learning and NLP (wildml.com)
  • Sequence to Sequence Models (tensorflow.org)
  • Sequence to Sequence Learning with Neural Networks (NIPS 2014)
  • Machine Learning is Fun Part 5: Language Translation with Deep Learning and the Magic of Sequences (medium.com/@ageitgey)
  • How to use an Encoder-Decoder LSTM to Echo Sequences of Random Integers(machinelearningmastery.com)
  • tf-seq2seq (google.github.io)

Python

  • 7 Steps to Mastering Machine Learning With Python (kdnuggets.com)
  • An example machine learning notebook (nbviewer.jupyter.org)

Examples

  • How To Implement The Perceptron Algorithm From Scratch In Python(machinelearningmastery.com)
  • Implementing a Neural Network from Scratch in Python (wildml.com)
  • A Neural Network in 11 lines of Python (iamtrask.github.io)
  • Implementing Your Own k-Nearest Neighbour Algorithm Using Python(kdnuggets.com)
  • Demonstration of Memory with a Long Short-Term Memory Network in Python (machinelearningmastery.com)
  • How to Learn to Echo Random Integers with Long Short-Term Memory Recurrent Neural Networks (machinelearningmastery.com)
  • How to Learn to Add Numbers with seq2seq Recurrent Neural Networks(machinelearningmastery.com)

Scipy and numpy

  • Scipy Lecture Notes (scipy-lectures.org)
  • Python Numpy Tutorial (Stanford CS231n)
  • An introduction to Numpy and Scipy (UCSB CHE210D)
  • A Crash Course in Python for Scientists (nbviewer.jupyter.org)

scikit-learn

  • PyCon scikit-learn Tutorial Index (nbviewer.jupyter.org)
  • scikit-learn Classification Algorithms (github.com/mmmayo13)
  • scikit-learn Tutorials (scikit-learn.org)
  • Abridged scikit-learn Tutorials (github.com/mmmayo13)

Tensorflow

  • Tensorflow Tutorials (tensorflow.org)
  • Introduction to TensorFlow — CPU vs GPU (medium.com/@erikhallstrm)
  • TensorFlow: A primer (metaflow.fr)
  • RNNs in Tensorflow (wildml.com)
  • Implementing a CNN for Text Classification in TensorFlow (wildml.com)
  • How to Run Text Summarization with TensorFlow (surmenok.com)

PyTorch

  • PyTorch Tutorials (pytorch.org)
  • A Gentle Intro to PyTorch (gaurav.im)
  • Tutorial: Deep Learning in PyTorch (iamtrask.github.io)
  • PyTorch Examples (github.com/jcjohnson)
  • PyTorch Tutorial (github.com/MorvanZhou)
  • PyTorch Tutorial for Deep Learning Researchers (github.com/yunjey)

Math

  • Math for Machine Learning (ucsc.edu)
  • Math for Machine Learning (UMIACS CMSC422)

Linear algebra

  • An Intuitive Guide to Linear Algebra (betterexplained.com)
  • A Programmer’s Intuition for Matrix Multiplication (betterexplained.com)
  • Understanding the Cross Product (betterexplained.com)
  • Understanding the Dot Product (betterexplained.com)
  • Linear Algebra for Machine Learning (U. of Buffalo CSE574)
  • Linear algebra cheat sheet for deep learning (medium.com)
  • Linear Algebra Review and Reference (Stanford CS229)

Probability

  • Understanding Bayes Theorem With Ratios (betterexplained.com)
  • Review of Probability Theory (Stanford CS229)
  • Probability Theory Review for Machine Learning (Stanford CS229)
  • Probability Theory (U. of Buffalo CSE574)
  • Probability Theory for Machine Learning (U. of Toronto CSC411)

Calculus

  • How To Understand Derivatives: The Quotient Rule, Exponents, and Logarithms (betterexplained.com)
  • How To Understand Derivatives: The Product, Power & Chain Rules(betterexplained.com)
  • Vector Calculus: Understanding the Gradient (betterexplained.com)
  • Differential Calculus (Stanford CS224n)
  • Calculus Overview (readthedocs.io)

作者:chen_h
微信号 & QQ:862251340
简书地址:http://www.jianshu.com/p/2be349a89a12

CoderPai 是一个专注于算法实战的平台,从基础的算法到人工智能算法都有设计。如果你对算法实战感兴趣,请快快关注我们吧。加入AI实战微信群,AI实战QQ群,ACM算法微信群,ACM算法QQ群。长按或者扫描如下二维码,关注 “CoderPai” 微信号(coderpai)

超过 150 个最佳机器学习,NLP 和 Python教程_第2张图片

超过 150 个最佳机器学习,NLP 和 Python教程_第3张图片

你可能感兴趣的:(人工智能)