import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
from tensorflow.examples.tutorials.mnist import input_data
data_dir="mnist"
mnist = input_data.read_data_sets(data_dir, one_hot=True)
#hyper parameters
learning_rate = 0.01
training_epochs = 20
batch_size = 256
display_step = 1
example_to_show = 10
#network parameters
n_hidden_1 = 256
n_hidden_2 = 128
n_input = 784
#pictures without labels
X = tf.placeholder("float", [None, n_input])
weights = {
'encoder_h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])),
'encoder_h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),
'decoder_h1': tf.Variable(tf.random_normal([n_hidden_2, n_hidden_1])),
'decoder_h2': tf.Variable(tf.random_normal([n_hidden_1, n_input])),
}
biases = {
'encoder_b1': tf.Variable(tf.random_normal([n_hidden_1])),
'encoder_b2': tf.Variable(tf.random_normal([n_hidden_2])),
'decoder_b1': tf.Variable(tf.random_normal([n_hidden_1])),
'decoder_b2': tf.Variable(tf.random_normal([n_input])),
}
#network structure
def encoder(x):
layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['encoder_h1']), biases['encoder_b1']))
layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['encoder_h2']), biases['encoder_b2']))
return layer_2
def decoder(x):
layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['decoder_h1']), biases['decoder_b1']))
layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['decoder_h2']), biases['decoder_b2']))
return layer_2
#model
encoder_op = encoder(X)
decoder_op = decoder(encoder_op)
#predict value
y_pred = decoder_op
#real value
y_true = X
#loss function and optimizer
cost = tf.reduce_mean(tf.pow(y_true - y_pred, 2))
optimizer = tf.train.RMSPropOptimizer(learning_rate).minimize(cost)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
total_batch = int(mnist.train.num_examples/batch_size)
#train
for epoch in range(training_epochs):
for i in range(total_batch):
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
#Run optimization op(backprop) and cost op(to get loss value)
_, c = sess.run([optimizer,cost], feed_dict={X: batch_xs})
if epoch % display_step ==0:
print "Epoch:", '%04d' %(epoch+1), "cost=", "{:.9f}".format(c)
print "Optimization Finished!"
#test
encode_decode = sess.run(y_pred, feed_dict={X: mnist.test.images[:example_to_show]})
#compare
f,a = plt.subplots(2, 10, figsize=(10, 2))
for i in range(example_to_show):
a[0][i].imshow(np.reshape(mnist.test.images[i], (28,28))) #test
a[1][i].imshow(np.reshape(encode_decode[i], (28, 28))) #rebuild
f.show()
plt.draw()
plt.waitforbuttonpress()
Optimization Finished!