这里以AtomicInteger为例:
内部存储
维护了一个整型值,其初始值为0。考虑到多线程操作,使用volatile来保证其可见性:
private volatile int value;
单独赋值操作
通过构造函数设置:
public AtomicInteger(int initialValue) { value = initialValue; }
Setter:
public final void set(int newValue) { value = newValue; }
延迟赋值:
public final void lazySet(int newValue) { unsafe.putOrderedInt(this, valueOffset, newValue); }
获取和赋值复合操作:
Getter:
public final int get() { return value; }
获取原值并设置新值:
public final int getAndSet(int newValue) { for (;;) { int current = get(); if (compareAndSet(current, newValue)) return current; } }
获取原值并自增:
public final int getAndIncrement() { for (;;) { int current = get(); int next = current + 1; if (compareAndSet(current, next)) return current; } }
获取原值并自减:
public final int getAndDecrement() { for (;;) { int current = get(); int next = current - 1; if (compareAndSet(current, next)) return current; } }
获取原值并加上指定值:
delta可以为负值,实现getAndSubtract功能
public final int getAndAdd(int delta) { for (;;) { int current = get(); int next = current + delta; if (compareAndSet(current, next)) return current; } }
自增并获取新值:
public final int incrementAndGet() { for (;;) { int current = get(); int next = current + 1; if (compareAndSet(current, next)) return next; } }
自减并获取新值:
public final int decrementAndGet() { for (;;) { int current = get(); int next = current - 1; if (compareAndSet(current, next)) return next; } }
加上指定值并获取新值:
同上,delta可以为负值,实现subtractAndGet功能
public final int addAndGet(int delta) { for (;;) { int current = get(); int next = current + delta; if (compareAndSet(current, next)) return next; } }
可以看出,上面的方法比较类似:循环地调用compareAndSet方法,一旦成功即返回。
看下compreAndSet方法:
public final boolean compareAndSet(int expect, int update) { return unsafe.compareAndSwapInt(this, valueOffset, expect, update); }
同时,还提供了weakCompareAndSet方法,调用的unsafe方法和上面相同:
public final boolean weakCompareAndSet(int expect, int update) { return unsafe.compareAndSwapInt(this, valueOffset, expect, update); }
性能测试
1. 和synchronized比较,单线程执行1000w次自增操作:
public class AtomicIntegerSynchTest { private int value; public AtomicIntegerSynchTest(int value) { this.value = value; } public synchronized int increase() { return value++; } public static void main(String[] args) { long start = System.currentTimeMillis(); AtomicIntegerSynchTest test = new AtomicIntegerSynchTest(0); for (int i = 0; i < 10000000; i++) { test.increase(); } long end = System.currentTimeMillis(); System.out.println("Synch elapsed: " + (end - start) + "ms"); long start2 = System.currentTimeMillis(); AtomicInteger atomicInt = new AtomicInteger(0); for (int i = 0; i < 10000000; i++) { atomicInt.incrementAndGet(); } long end2 = System.currentTimeMillis(); System.out.println("Atomic elapsed: " + (end2 - start2) + "ms"); } }
输出:
Synch elapsed: 383ms
Atomic elapsed: 208ms (单线程环境下,AtomicInteger比同步的性能稍好一点)
2. 多线程多次操作:
这里使用100个线程,每个线程执行10w次自增操作,为了统计100个线程并发执行所耗费的时间,使用CountDownLatch来协调。
public class AtomicIntegerMultiThreadTest { private /*volatile*/ int value; public AtomicIntegerMultiThreadTest(int value) { this.value = value; } public synchronized int increase() { return value++; } public int unSyncIncrease() { return value++; } public int get() { return value; } public static void main(String[] args) throws InterruptedException { long start = System.currentTimeMillis(); final CountDownLatch latch = new CountDownLatch(100); final AtomicIntegerMultiThreadTest test = new AtomicIntegerMultiThreadTest(0); for (int i = 0; i < 100; i++) { new Thread(new Runnable() { @Override public void run() { for (int i = 0; i < 100000; i++) { test.increase(); //test.unSyncIncrease(); } latch.countDown(); } }).start(); } latch.await(); long end = System.currentTimeMillis(); System.out.println("Synch elapsed: " + (end - start) + "ms, value=" + test.get()); long start2 = System.currentTimeMillis(); final CountDownLatch latch2 = new CountDownLatch(100); final AtomicInteger atomicInt = new AtomicInteger(0); for (int i = 0; i < 100; i++) { new Thread(new Runnable() { @Override public void run() { for (int i = 0; i < 100000; i++) { atomicInt.incrementAndGet(); } latch2.countDown(); } }).start(); } latch2.await(); long end2 = System.currentTimeMillis(); System.out.println("Atomic elapsed: " + (end2 - start2) + "ms, value=" + atomicInt.get()); } }
输出:
Synch elapsed: 1921ms, value=10000000
Atomic elapsed: 353ms, value=10000000 (AtomicInteger的性能是synchronized的5倍多)
当给value加上volatile修饰符时:
Synch elapsed: 2268ms, value=10000000 (volatile禁止代码重排序,一定程度上降低了性能)
Atomic elapsed: 337ms, value=10000000
当调用未同步的自增方法unSyncIncrease时:
Synch elapsed: 216ms, value=5852266 (非原子操作不加同步,导致结果错误)
Atomic elapsed: 349ms, value=10000000