Suppose that all the keys in a binary tree are distinct positive integers. Given the postorder and inorder traversal sequences, you are supposed to output the level order traversal sequence of the corresponding binary tree.
Each input file contains one test case. For each case, the first line gives a positive integer N (≤30), the total number of nodes in the binary tree. The second line gives the postorder sequence and the third line gives the inorder sequence. All the numbers in a line are separated by a space.
For each test case, print in one line the level order traversal sequence of the corresponding binary tree. All the numbers in a line must be separated by exactly one space, and there must be no extra space at the end of the line.
7
2 3 1 5 7 6 4
1 2 3 4 5 6 7
4 1 6 3 5 7 2
题型分类:树的遍历、建树
题目大意:给出后序遍历和中序遍历,要求输出层序遍历的序列。
解题思路:由后序遍历和中序遍历建树,然后使用stl模板下的queue进行层序遍历即可。
#include
#include
using namespace std;
const int maxn = 35;
typedef struct Node{
int data;
Node *left, *right;
}Node;
int post[maxn], in[maxn], level[maxn];
Node* createTree(int postL, int postR, int inL, int inR);
void levelOrder(Node *root);
int main(int argc, char** argv) {
int N;
scanf("%d", &N);
for(int i = 0; i < N; i++){
scanf("%d", &post[i]);
}
for(int i = 0; i < N; i++){
scanf("%d", &in[i]);
}
Node* root = createTree(0, N - 1, 0, N - 1);
levelOrder(root);
for(int i = 0; i < N; i++){
if(i != 0) printf(" ");
printf("%d", level[i]);
}
return 0;
}
Node* createTree(int postL, int postR, int inL, int inR){
if(postL > postR){
return NULL;
}
Node *root = new Node;
root->data = post[postR];
int k;
for(k = inL; k <= inR; k++){
if(in[k] == root->data){
break;
}
}
int leftNum = k - inL;
root->left = createTree(postL, postL + leftNum - 1, inL, inL + leftNum - 1);
root->right = createTree(postL + leftNum, postR - 1, inL + leftNum + 1, inR);
return root;
}
void levelOrder(Node *root){
queue q;
q.push(root);
int num = 0;
while(!q.empty()){
Node* now = q.front();
q.pop();
level[num++] = now->data;
if(now->left){
q.push(now->left);
}
if(now->right){
q.push(now->right);
}
}
}