你需要知道的那些 redis 数据结构(前篇)

Redis提供了5中数据结构:string、list、hash、set、sorted set

这里先讨论string

一、sds 简单动态字符串

1、sds 结构redis

没有直接使用 C 语言传统的字符串表示(以空字符结尾的字符数组,以下简称 C 字符串), 而是自己构建了一种名为简单动态字符串(simple dynamic string,sds)的抽象类型,并将 sds 用作 redis 的默认字符串表示。根据传统,C 语言使用长度为 N+1 的字符数组来表示长度为 N 的字符串, 并且字符数组的最后一个元素总是空字符 ‘\0’ 。如下图:
[外链图片转存失败(img-13fNb7zs-1568810556268)(en-resource://database/9844:0)]

因为 C 字符串并不记录自身的长度信息,所以为了获取一个 C 字符串的长度,程序必须遍历整个字符串, 对遇到的每个字符进行计数,直到遇到代表字符串结尾的空字符为止,这个操作的复杂度为 O(N) 。

和 C 字符串不同,因为 sds 在 len 属性中记录了 sds 本身的长度,所以获取一个 sds 长度的复杂度仅为 O(1) 。与此同时,它还通过 alloc 属性记录了自己的总分配空间。下图为 sds 的数据结构:

sds结构中,用len属性记录sds本身的长度,用alloc属性记录分配空间的大小

[外链图片转存失败(img-gTdua2GX-1568810556270)(en-resource://database/9846:0)]

区别于 C 字符串,sds 有自己独特的 header,而且多达 5 种,结构如下:

typedef char *sds;


/* Note: sdshdr5 is never used, we just access the flags byte directly.
 * However is here to document the layout of type 5 SDS strings. */
struct __attribute__ ((__packed__)) sdshdr5 {
    unsigned char flags; /* 3 lsb of type, and 5 msb of string length */
    char buf[];
};
struct __attribute__ ((__packed__)) sdshdr8 {
    uint8_t len; /* used */
    uint8_t alloc; /* excluding the header and null terminator */
    unsigned char flags; /* 3 lsb of type, 5 unused bits */
    char buf[];
};
struct __attribute__ ((__packed__)) sdshdr16 {
    uint16_t len; /* used */
    uint16_t alloc; /* excluding the header and null terminator */
    unsigned char flags; /* 3 lsb of type, 5 unused bits */
    char buf[];
};
struct __attribute__ ((__packed__)) sdshdr32 {
    uint32_t len; /* used */
    uint32_t alloc; /* excluding the header and null terminator */
    unsigned char flags; /* 3 lsb of type, 5 unused bits */
    char buf[];
};
struct __attribute__ ((__packed__)) sdshdr64 {
    uint64_t len; /* used */
    uint64_t alloc; /* excluding the header and null terminator */
    unsigned char flags; /* 3 lsb of type, 5 unused bits */
    char buf[];
};

之所以有 5 种,是为了能让不同长度的字符串可以使用不同大小的 header。这样,短字符串就能使用较小的 header,从而节省内存。

通过使用 sds 而不是 C 字符串,redis 将获取字符串长度所需的复杂度从 O(N) 降低到了 O(1) ,这是一种以空间换时间的策略,确保了获取字符串长度的工作不会成为 redis 的性能瓶颈。

2、内存分配策略

再来看 sds 的定义,它是简单动态字符串。可动态扩展内存也是它的特性之一。sds 表示的字符串其内容可以修改,也可以追加。在很多语言中字符串会分为 mutable 和 immutable 两种,显然 sds 属于 mutable 类型的。当 sds API 需要对 sds 进行修改时, API 会先检查 sds 的空间是否满足修改所需的要求, 如果不满足的话,API 会自动将 sds 的空间扩展至足以执行修改所需的大小,然后才执行实际的修改操作,所以使用 sds 既不需要手动修改 sds 的空间大小, 也不会出现 C 语言中可能面临的缓冲区溢出问题。

提到字符串变化就不得不提到内存重分配这个问题,对于一个 C 字符串,每次发生变更,程序都总要对保存个 C 字符串的数组进行一次内存重分配操作:

  • 如果程序执行的是增长字符串的操作,比如拼接操作(append),那么在执行这个操作之前, 程序需要先通过内存重分配来扩展底层数组的空间大小 —— 如果忘了这一步就会产生缓冲区溢出。
  • 如果程序执行的是缩短字符串的操作,比如截断操作(trim),那么在执行这个操作之后, 程序需要通过内存重分配来释放字符串不再使用的那部分空间 —— 如果忘了这一步就会产生内存泄漏。

因为内存重分配涉及复杂的算法,并且可能需要执行系统调用,所以它通常是一个比较耗时的操作:

  • 在一般程序中, 如果修改字符串长度的情况不太常出现, 那么每次修改都执行一次内存重分配是可以接受的。
  • 但是 redis 作为一个内存数据库, 经常被用于速度要求严苛、数据被频繁修改的场合, 如果每次修改字符串的长度都需要执行一次内存重分配的话, 那么光是执行内存重分配的时间就会占去修改字符串所用时间的一大部分, 如果这种修改频繁地发生的话, 可能还会对性能造成影响。

为了避免 C 字符串的这种缺陷,sds 通过未使用空间解除了字符串长度和底层数组长度之间的关联:在 sds 中,buf 数组的长度不一定就是字符数量加一,数组里面可以包含未使用的字节,而这些未使用字节的数量可以由 sds 的 alloc 属性减去len属性得到。通过未使用空间,sds 实现了空间预分配和惰性空间释放两种优化策略。

空间预分配

空间预分配用于优化 sds 的字符串增长操作:当 sds 的 API 对一个 sds 进行修改,并且需要对 sds 进行空间扩展的时候,程序不仅会为 sds 分配修改所必须要的空间,还会为 sds 分配额外的未使用空间,并根据新分配的空间重新定义 sds 的 header。此部分的代码逻辑如下:

/* Return ASAP if there is enough space left. */
    if (avail >= addlen) return s;

    len = sdslen(s);
    sh = (char*)s-sdsHdrSize(oldtype);
    newlen = (len+addlen);
    if (newlen < SDS_MAX_PREALLOC)
        newlen *= 2;
    else
        newlen += SDS_MAX_PREALLOC;

    type = sdsReqType(newlen);

简单来说就是:
如果对 sds 进行修改之后,sds 的长度(也即是 len 属性的值)将小于 1 MB ,那么程序分配和 len 属性同样大小的未使用空间,这时 SDSsdsalloc 属性的值将正好为 len 属性的值的两倍。举个例子, 如果进行修改之后,sds 的 len 将变成 13 字节,那么程序也会分配 13 字节的未使用空间,alloc 属性将变成 13字节,sds 的 buf 数组的实际长度将变成 13 + 13 + 1 = 27 字节(额外的一字节用于保存空字符)。
如果对 sds 进行修改之后,sds 的长度将大于等于 1 MB ,那么程序会分配 1 MB 的未使用空间。举个例子, 如果进行修改之后,sds 的 len 将变成 30 MB,那么程序会分配 1 MB 的未使用空间,alloc 属性将变成 31 MB ,sds 的 buf 数组的实际长度将为 30 MB + 1 MB + 1 byte。
通过空间预分配策略,Redis 可以减少连续执行字符串增长操作所需的内存重分配次数。通过这种空间换时间的预分配策略,sds 将连续增长 N 次字符串所需的内存重分配次数从必定 N 次降低为最多 N 次。内存预分配策略仅在 sds 扩展的时候才触发,而新创建的 sds 长度和 C 字符串一致,是长度 + 1byte。

惰性空间释放

惰性空间释放用于优化 sds 的字符串缩短操作:当 sds 的 API 需要缩短 sds 保存的字符串时, 程序并不立即使用内存重分配来回收缩短后多出来的字节,而是使用 free 属性将这些字节的数量记录起来, 并等待将来使用。
通过惰性空间释放策略,sds 避免了缩短字符串时所需的内存重分配操作, 并为将来可能有的增长操作提供了优化。与此同时,sds 也提供了相应的 API sdsfree,让我们可以在有需要时, 真正地释放 sds 里面的未使用空间,所以不用担心惰性空间释放策略会造成内存浪费。源码如下:

/* Free an sds string. No operation is performed if 's' is NULL. */
void sdsfree(sds s) {
    if (s == NULL) return;
    s_free((char*)s-sdsHdrSize(s[-1]));
}

细想一下,惰性空间释放策略也是空间换时间策略的实现之一,作者对于性能的追求是非常执着的。当然也不是说为了性能,就不在乎内存的使用了,且看下一部分。

你可能感兴趣的:(Redis)