滑动窗口轨迹压缩Python实现

轨迹压缩

问题描述:

已知出租车的运动轨迹点文件,在误差范围内,压缩轨迹。

平台:

Linux

语言:

Python3.5

结果截图:

滑动窗口轨迹压缩Python实现_第1张图片
滑动窗口轨迹压缩Python实现_第2张图片

解决思路:

最容易想到的应该是DP算法,即取初始轨迹的起点A和终点B连线,计算每个点到这条线的距离,距离最大的点C若小于要求误差则结束;否则将C点加入压缩后的数据集,对AC和CB重复以上过程直至满足误差要求。
DP算法Java实现:http://www.cnblogs.com/xdlwd086/p/5100425.html
正是参考了这篇文章,作业才得以完成,在此谢过~~~
此篇文章将实现另一种轨迹压缩算法一种改进的滑动窗口轨迹数据压缩算法 百度学术链接算法原理及步骤在前面百度学术链接中可自行下载,非常清楚,这里不在赘述,接下来是代码实现。

代码实现

from math import *
import sys

sys.setrecursionlimit(10000)


def dfTodu(str):
    str = str.split('.')
    d = (float(str[0][:-2])) + (float(str[0][-2:] + str[1]) / 600000)
    return d

#将文件中的经纬度提取出保存到数组
def createDataSet():
    rfile = open("2007-10-14-GPS.log")
    time = []
    jwd = []
    index = 0
    for line in rfile:
        strlist = line.split(' ', 8)
        time.append(strlist[2])
        jwd.append([dfTodu(strlist[5]), dfTodu(strlist[3]), index])
        index += 1
    rfile.close()
    return time, jwd

#将压缩后的轨迹写入数组
def Write(enpArrayFilter):
    wfile = open('2016-10-28.log', "w")
    for i in enpArrayFilter:
        wfile.write(str(i) + "\n")


def geoDist(pA, pB):
    radLat1 = Rad(pA[0])
    radLat2 = Rad(pB[0])
    delta_lon = Rad(pB[1] - pA[1])
    top_1 = cos(radLat2) * sin(delta_lon)
    top_2 = cos(radLat1) * sin(radLat2) - sin(radLat1) * cos(radLat2) * cos(delta_lon)
    top = sqrt(top_1 * top_1 + top_2 * top_2)
    bottom = sin(radLat1) * sin(radLat2) + cos(radLat1) * cos(radLat2) * cos(delta_lon)
    delta_sigma = atan2(top, bottom)
    distance = delta_sigma * 6378137.0
    return distance


def Rad(d):
    return d * pi / 180.0


def distToSegment(pA, pB, pX):
    a = abs(geoDist(pA, pB))
    b = abs(geoDist(pA, pX))
    c = abs(geoDist(pB, pX))
    p = (a + b + c) / 2.0
    s = sqrt(abs(p * (p - a) * (p - b) * (p - c)))
    d = s * 2.0 / a
    return d

#滑动窗口算法
#enpInitenpInit初始轨迹点数组
#enpArrayFilter过滤数组
#start窗口内的起始点 
#end窗口内的终点
#cur当前点
#m目前误差最大的点
#DMax最大误差
#count
def SlideWindow(enpInit, enpArrayFilter, start, end, cur, m, DMax, count):
    if (end < count):
        d_cur = distToSegment(enpInit[start], enpInit[end], enpInit[cur])  # 当前点到对应线段的距离
        d_m = distToSegment(enpInit[start], enpInit[end], enpInit[m])  # 当前点到对应线段的距离
        if (d_cur > DMax or d_m > DMax):
            enpArrayFilter.append(enpInit[cur])  # 将当前点加入到过滤数组中
            start = cur
            cur = start + 1
            end = start + 2
            m = cur
            d_m = 0
            SlideWindow(enpInit, enpArrayFilter, start, end, cur, m, DMax, count)
        elif ((d_cur <= DMax) and (d_m <= DMax)):
            if (d_cur > d_m):
                m = cur
            cur = end
            end = end + 1
            SlideWindow(enpInit, enpArrayFilter, start, end, cur, m, DMax, count)

#平均误差计算函数
def getMeanDistError(enpInit, enpArrayFilter):
    sumDist = 0
    for i in range(1, len(enpArrayFilter)):
        start = enpArrayFilter[i - 1][2]
        end = enpArrayFilter[i][2]
        for j in range(start + 1, end):
            sumDist += distToSegment(enpInit[start], enpInit[end], enpInit[j])
    return sumDist / len(enpInit)


time, jwd = createDataSet()
start = 0
end = 2
cur = 1
DMax = 30
enpInit = jwd
m = 1
count = len(enpInit) - 1
enpArrayFilter = []
enpArrayFilter.append(enpInit[0])  # 获取第一个原始经纬度点坐标并添加到过滤后的数组中
SlideWindow(enpInit, enpArrayFilter, start, end, cur, m, DMax, count)
Write(enpArrayFilter)
c_enpInit = len(enpInit)
c_enpArrayFilter = len(enpArrayFilter)
print("压缩前的点数=" + str(c_enpInit))
print("压缩后的点数=" + str(c_enpArrayFilter))
print("压缩率=" + str(c_enpArrayFilter / c_enpInit * 100) + "%")
print("平均误差=" + str(getMeanDistError(enpInit, enpArrayFilter)))

源码及数据文件下载

你可能感兴趣的:(开发)