- Python, C ++开发全国研学基地查询与管理APP
Geeker-2025
pythonc++
以下是基于Python和C++开发全国研学基地查询与管理APP的技术方案,结合高性能数据处理、混合语言开发及教育行业合规性要求:---###**一、核心功能架构**```mermaidgraphTDA[用户端APP]-->B{API网关}C[管理端平台]-->BB-->D[Python业务微服务]D-->E[C++数据处理引擎]D-->F[时空数据库集群]E-->G[智能推荐系统]F-->H[可视
- 因果推断推荐系统工具箱 - PRS(二)
processor4d
文章名称【WSDM-2021】【UniversityofVirginia-Google】Non-ClicksMeanIrrelevant?PropensityRatioScoringAsaCorrection核心要点上一节讲解了在unbiasL2R的场景中,基于pairwise比较的损失函数的IPS的方法存在与真实评估指标偏离的问题,这一节讲解如何环节这一问题,并学习模型参数。方法细节问题引入作者
- AIGC 领域 AI 写作在电商文案中的应用技巧
SuperAGI架构师的AI实验室
AI大模型应用开发宝典AIGC人工智能easyuiai
AIGC领域AI写作在电商文案中的应用技巧关键词:AIGC、AI写作、电商文案、内容生成、自然语言处理、营销自动化、个性化推荐摘要:本文深入探讨了AIGC(人工智能生成内容)技术在电商文案创作中的应用技巧。文章首先介绍了AIGC的基本概念和发展现状,然后详细分析了AI写作在电商领域的核心应用场景和技术原理。通过具体的算法解析、数学模型和实际案例,展示了如何利用AI技术提升电商文案的创作效率和质量。
- 深入理解 Top-K 问题:高效的 nlogk 算法及 C++ 实现
在日常开发和算法面试中,Top-K问题是一类非常常见的场景。例如"找出数组中前K个最大的元素"、"统计热门搜索词"、"推荐系统中的热门商品"等,都可以归结为Top-K问题。本文将详细讲解如何用时间复杂度为O(nlogk)的高效算法解决这类问题,并通过C++代码实现具体方案。一、什么是Top-K问题?Top-K问题可以抽象为:从含有n个元素的集合中,找出其中最大(或最小)的k个元素。常见的应用场景包
- 人货匹配模型没搞懂?互联网行业都在讨论它
weixin_38754337
大数据数据分析推荐系统cachingtwitter
来源:接地气学堂作者:接地气的陈老师大多数据分析书本、文章都提过人货场模型,但对于其中最核心的人货如何匹配,没有详细介绍。人货匹配是非常底层的分析理论,涉及到转化率分析、用户分群、推荐算法训练等重要议题,无论互联网的电商、O2O、短视频、直播等产品都会考虑这点。废话不多说,今天详细介绍一下。01导购型匹配设想一个最简单的场景:顾客站在柜台前,说“我想要个电风扇”。此时顾客需求已经跋山涉水来到店里,
- 实测报告:拼多多返利软件哪家返利最多?
日常购物技巧呀
拼多多官方返利APP,省钱达人的秘密武器在省钱达人的世界里,拼多多官方返利APP无疑是一件秘密武器。这款APP以其精准的推荐算法和丰富的返利活动让用户在购物时能够轻松找到性价比最高的商品并获得额外的经济回报。无论是想要购买时尚单品还是家居用品,拼多多官方返利APP都能让你以更低的价格享受到更高品质的生活。如果你也是一位追求省钱的消费者那么不妨试试这款APP吧!在探索省钱之道的旅途中,不得不提的另一
- 玩转 Milvus(二):在 Ubuntu 22.04(WSL2)上安装 Milvus
不学无术の码农
玩转Milvus:向量搜索与AI实践milvus向量数据库
玩转Milvus(二):在Ubuntu22.04(WSL2)上安装Milvus引言:让Milvus在你的笔记本上“起飞”在《玩转Milvus(一)》中,我们揭开了向量数据库的神秘面纱,认识了Milvus作为AI时代的“超级引擎”,如何驱动智能搜索、推荐系统和多模态应用。现在,是时候让Milvus在你的电脑上“落地生根”了!本篇博客将带你在Ubuntu22.04(WSL2)环境下安装Milvus,聚
- 双塔模型(Two-Tower Model)推荐系统实践
双塔模型双塔模型(Two-TowerModel)是一种常用的推荐系统或搜索排序模型架构,由两个独立的神经网络(即“双塔”)组成,分别处理用户和物品的特征,最后通过相似度计算(如点积、余弦相似度)得到匹配分数。Rust因其高性能和安全性,适合实现此类模型。双塔模型的定义双塔模型(Dual-TowerModel)是一种深度学习架构,由两个独立的神经网络塔(Tower)组成,分别处理不同的输入数据,最后
- 好省是什么?好省现在怎么样了?
氧惠评测
好省是一款由杭州嘉洁网络科技有限公司开发的电商导购应用,它旨在为用户打造一个电商购物优惠平台。通过智能搜索、个性化推荐等技术,好省帮助用户发现并购买自己需要的商品,并提供丰富的优惠券和特权福利,使用户在购物过程中能够省钱、省时、省心、省力。好省的功能与优势智能搜索与个性化推荐:好省根据用户的搜索历史、浏览记录等个性化信息,为用户推荐相关商品,提高购物效率和满意度。优惠券与特权福利:用户可以在好省上
- KNN 算法进阶:从基础到优化的深度解析
二向箔reverse
人工智能机器学习
在机器学习的广袤领域中,K-近邻算法(K-NearestNeighbors,KNN)以其简洁直观的理念,宛如一颗璀璨的明星,照亮了无数初学者踏入机器学习大门的道路。自1951年由EvelynFix和JosephHodges创立,并经ThomasCover进一步完善以来,KNN算法凭借其独特的魅力,在数据挖掘、推荐系统、物联网等众多领域发挥着中流砥柱的作用,成为了监督学习算法家族中不可或缺的一员。一
- 基于Android studio的城市景区旅游导航与推荐系统
QQ242219979
androidstudio旅游android
随着时代的发展和进步,越来越多人选择在空闲的时间出去旅游,人们要前往陌生的城市旅游,就不可避免地会出现迷路,不知道景点等情况,基于此,旅游app变成了游客的热门选择,兼顾导航与热门景点推荐,方便游客查询路线的同时也能为游客推荐一些热门的旅游景点,让游客更加方便快捷的找到想去的地方,有一个更加舒适的旅游体验。苏州作为热门旅游城市,其中姑苏区经典密集,但是路线复杂,人流密集,游客来到这里,不知道该去哪
- 推荐系统如何开发
一行代码通万物
python人工智能推荐系统
推荐系统实现了基于协同过滤的推荐功能支持两种推荐模式:基于用户的协同过滤(寻找相似用户喜欢的物品)基于物品的协同过滤(寻找相似物品)主要功能:数据加载(支持自定义数据或内置的MovieLens数据集)模型训练模型评估(计算RMSE和MAE指标)为指定用户生成推荐列表使用前需要安装依赖库:pipinstallsurprisepandasnumpy可以通过修改sim_options参数来调整相似度计算
- 计算机毕业设计之SpringBoot+Vue.js知识图谱中药可视化系统
计算机毕业设计大全
需求用户信息管理:新用户注册,已有账号再登录,用户注销,用户信息修改。2.中药材信息查询:用户可以点击系统给出的或按编码或按药性等条件进行查询,或通过搜索框自主输入想要查询的信息进行中药材查询。3.中药材资讯社区:进入后首页顶部有推荐咨询可供浏览,依靠基于内容的推荐算法(即基于用户与标的物的相关信息以及用户对标的物的操作行为来构成推荐算法模型为用户提供推荐服务)实现实时咨询推荐。推荐底下是最新审核
- (附源码)计算机毕业设计SSM健康饮食推荐系统
学姐计算机毕设程序
mybatisjavamysql
(附源码)计算机毕业设计SSM健康饮食推荐系统项目运行环境配置:Jdk1.8+Tomcat7.0+Mysql+HBuilderX(Webstorm也行)+Eclispe(IntelliJIDEA,Eclispe,MyEclispe,Sts都支持)。项目技术:SSM+mybatis+Maven+Vue等等组成,B/S模式+Maven管理等等。环境需要1.运行环境:最好是javajdk1.8,我们在这
- 用大数据玩转社交媒体营销:精准触达背后的“魔法”秘籍
Echo_Wish
大数据高阶实战秘籍大数据媒体
用大数据玩转社交媒体营销:精准触达背后的“魔法”秘籍咱们都知道,社交媒体已经成为品牌和用户互动的主战场。微博、抖音、微信、Instagram……铺天盖地的信息让人眼花缭乱,想在茫茫内容海洋里精准触达目标用户,光靠“发广告”根本不够。这时,大数据技术就成了“秘密武器”。它帮营销人员从海量数据里提取有价值的洞见,实现个性化推荐、用户画像构建、情感分析,甚至实时舆情监控,让营销效果实现“质”的飞跃。今天
- Java游戏陪练系统搭建:功能架构与陪玩匹配机制详解
省钱兄科技
java游戏架构
Java游戏陪练系统搭建:功能架构与陪玩匹配机制详解一、功能架构设计基于Java的游戏陪练系统通常采用分层架构,确保高内聚、低耦合,便于扩展和维护。核心功能模块包括:用户管理模块支持玩家与陪玩师注册、登录、实名认证(人脸识别+身份证OCR+游戏账号绑定)。用户画像构建:基于游戏历史、胜率、偏好等数据,为个性化推荐提供支持。权限管理:RBAC模型实现角色-菜单绑定,保障系统安全。订单管理模块订单全生
- 2025年商城系统小程序开发全指南:技术架构与商业创新实践
一、行业背景与趋势洞察1.1零售数字化变革数据驱动:全球电商渗透率突破65%,小程序成为私域流量运营核心工具。技术融合:AI推荐算法提升转化率30%,AR虚拟试穿降低退货率25%。用户期待:90后消费者对"所见即所得"的即时消费场景需求激增。1.2核心痛点解析同质化竞争:传统商城功能雷同,缺乏差异化体验。供应链低效:库存周转率低,跨平台订单履约困难。信任危机:假货问题、支付安全、售后保障机制缺失。
- AI产品经理面试宝典第51天:团队协作与跨职能实战精讲
TGITCIC
AI产品经理一线大厂面试题AI产品经理面试大模型产品经理面试AI面试大模型面试AI产品大模型产品
一、用户需求分析与场景化落地1.1用户需求分析的核心方法论问:如何进行用户需求分析?答:采用"双三角模型":显性需求挖掘:通过NPS调研+行为日志分析,量化高频痛点(如某语音助手误触率超行业均值20%)隐性需求洞察:运用KANO模型区分基础型需求(如登录稳定性)与兴奋型需求(如个性化推荐)技术可行性校准:与算法团队联合评估需求优先级矩阵(ROI>20%的进入MVP开发池)指导意见需展示数据驱动思维
- 如何面试AI产品经理职位?
从美团AI产品经理岗位的面试题来看,该岗位要求技术深度、产品思维和伦理意识的高度融合。以下是系统分析及准备建议:一、AI产品经理核心职责技术桥梁:将业务需求转化为技术方案(如LLM优化、推荐系统设计)全链路管理:主导AI产品从需求分析、模型选型、效果验证到上线的全流程风险控制:识别并解决模型偏见、幻觉、数据安全等伦理风险性能优化:平衡算法效果与工程约束(如推理速度、资源消耗)价值量化:设计评估体系
- Python全站爬取与知识图谱构建实战:从数据采集到语义建模的全流程指南
Python爬虫项目
python知识图谱easyui信息可视化开发语言爬虫人工智能
引言随着信息爆炸时代的到来,如何系统化地获取并结构化网站上的海量信息,成为数据科学和人工智能领域的重要课题。知识图谱作为将结构化数据和语义联系可视化的强大工具,正广泛应用于搜索引擎、推荐系统、智能问答等领域。本文将系统讲解如何用Python实现对目标网站的全站爬取,并结合自然语言处理技术,自动抽取实体与关系,最终构建成知识图谱。全流程涵盖爬取策略、信息抽取、知识融合及可视化,配合丰富的代码示例,助
- 使用 QLExpress 构建灵活可扩展的业务规则引擎
目录一、什么是QLExpress?二、推荐系统中的规则脚本应用1场景描述2推荐规则脚本(QLExpress)3系统实现4执行结果5推荐系统应用建议三、风控系统中的规则判定1场景描述2风控规则脚本(QLExpress)3系统实现4执行结果5风控系统应用建议四、设计建议在大型系统中,规则引擎的存在使业务逻辑从代码中解耦出来,使得系统具备更高的灵活性与可维护性。阿里巴巴开源的QLExpress正是一款轻
- 亿级流量短剧平台架构演进:高并发场景下的微服务设计与性能调优
wx_ywyy6798
短剧系统短剧系统开发海外短剧系统海外短剧系统开发短剧分销系统短剧分销系统开发短剧
一、短剧系统概述与市场背景短剧作为一种新兴的内容形式,近年来在移动互联网领域迅速崛起。根据最新市场数据显示,2023年中国短剧市场规模已突破300亿元,用户规模达到4.5亿,平均每日观看时长超过60分钟。这种爆发式增长催生了对专业短剧系统开发的需求。短剧系统的核心特点包括:内容碎片化:单集时长通常在1-10分钟之间剧情紧凑:高密度叙事,快速推进情节交互性强:支持点赞、评论、分享等社交功能个性化推荐
- 基于定制开发开源AI智能名片S2B2C商城小程序源码的搜索框个性化推荐机制研究
摘要:本文聚焦于定制开发开源AI智能名片S2B2C商城小程序源码场景下的搜索框个性化推荐机制。通过分析搜索框作为信息流槽位的产品形态特性,结合开源AI大模型与S2B2C模式的技术融合优势,提出基于用户强兴趣/即时兴趣的动态推荐策略。研究揭示了定制化开发在破解传统搜索框静态局限中的关键作用,并通过实证案例验证了该机制对提升用户转化率与平台GMV的显著效果,为新零售场景下的智能推荐系统设计提供了理论依
- 今日头条极速版邀请码 今日头条极速版2023新版邀请码
凌风导师
2023今日头条极速版是一款全新的版本,在这里用户们可以查看每日最新的头条,让你可以第一时间了解天下大事,引领潮流今日头条极速版邀请码:1168892484返点已开到最高!填错不负责,切记填对,同时为2亿2千万用户个性化推荐约10亿条新闻资讯,聚合新浪、百度、凤凰等各大门户的全平台讯息,涵盖热点、科技、财经、社会、国际今日头条极速版邀请码:1168892484返点已开到最高!填错不负责,切记填对、
- Eureka在大数据推荐系统中的服务治理实践
大数据洞察
eureka大数据云原生ai
Eureka在大数据推荐系统中的服务治理实践:从理论到落地的全面解析元数据框架标题:Eureka在大数据推荐系统中的服务治理实践:从理论到落地的全面解析关键词:Eureka;服务治理;大数据推荐系统;分布式架构;服务发现;高可用性;动态扩展摘要:本文结合Eureka的核心特性与大数据推荐系统的需求,从第一性原理推导、架构设计、实现机制到实际应用,全面解析Eureka在推荐系统中的服务治理实践。通过
- 向量数据库FAISS/Chromadb/ES/milvus简单概述
FAISSFAISS(FacebookAISimilaritySearch)是一种高性能的向量相似性搜索库,用于在大规模向量数据集中快速搜索最相似的向量。它是由FacebookAIResearch开发的,旨在解决大规模向量搜索的问题,广泛应用于各种领域,如图像搜索、文本搜索、推荐系统等。FAISS的主要特点和优势如下:高效的相似性搜索:FAISS使用了一系列高效的算法和数据结构,如倒排索引、局部敏
- AI原生应用中的用户画像构建:从理论到实践全解析
AI原生应用中的用户画像构建:从理论到实践全解析关键词:用户画像、AI原生应用、特征工程、机器学习、个性化推荐、数据隐私、模型优化摘要:本文全面解析AI原生应用中用户画像构建的全过程,从基础概念到核心技术,再到实际应用和未来趋势。我们将用通俗易懂的方式讲解用户画像如何像"数字身份证"一样工作,深入探讨特征提取、模型构建等关键技术,并通过实际案例展示用户画像在推荐系统、精准营销等场景中的应用。文章还
- 怎么能得到各种淘宝优惠券呢?领取淘宝优惠券的平台有哪些?
氧惠评测
要得到各种淘宝优惠券,可以通过以下几种途径:一、使用第三方优惠券平台除了直接在淘宝平台领取外,还可以使用第三方优惠券平台来获取更多的优惠券资源。这些平台通常会与淘宝商家合作,提供额外的优惠券和返利服务。以下是一些常见的领取淘宝优惠券的平台:氧惠APP特点:氧惠APP不仅提供了淘宝的优惠券,还涵盖了其他主流电商平台和生活服务平台,如美团、饿了么等。它以其全面的优惠信息和精准的推荐系统赢得了用户的喜爱
- 智能体学习记录 一
罗同学213
学习
智能体是什么智能体(IntelligentAgent)是一种能够感知周围环境、自主决策并执行行动以实现特定目标的智能化系统或程序。它可以是软件(如聊天机器人)、硬件(如机器人),或两者结合的实体,核心特征包括:自主性:无需人工实时干预,独立运行(如自动驾驶车辆避障)。反应性:实时感知环境变化并快速响应(如智能家居调节温度)。目标导向:基于预设目标优化行动(如推荐系统最大化用户点击率)。学习能力:通
- 使用 Python 爬取网易云音乐歌单数据(完整教程)
Python爬虫项目
python开发语言githubselenium爬虫
一、引言随着在线音乐平台的普及,网易云音乐(NetEaseCloudMusic)凭借其个性化的推荐算法和丰富的用户互动,吸引了大量用户。网易云音乐的歌单中包含了丰富的音乐数据,包括歌曲名、歌手、专辑、播放量、评论数等信息。通过爬取这些数据,可以对音乐流行趋势进行分析,挖掘音乐推荐策略,甚至训练个性化推荐模型。本教程将使用Python构建一个爬虫,解析网易云音乐的歌单接口,获取歌曲数据并进行数据分析
- apache ftpserver-CentOS config
gengzg
apache
<server xmlns="http://mina.apache.org/ftpserver/spring/v1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
http://mina.apache.o
- 优化MySQL数据库性能的八种方法
AILIKES
sqlmysql
1、选取最适用的字段属性 MySQL可以很好的支持大数据量的存取,但是一般说来,数据库中的表越小,在它上面执行的查询也就会越快。因此,在创建表的时候,为了获得更好的 性能,我们可以将表中字段的宽度设得尽可能小。例如,在定义邮政编码这个字段时,如果将其设置为CHAR(255),显然给数据库增加了不必要的空间,甚至使用VARCHAR这种类型也是多余的,因为CHAR(6)就可以很
- JeeSite 企业信息化快速开发平台
Kai_Ge
JeeSite
JeeSite 企业信息化快速开发平台
平台简介
JeeSite是基于多个优秀的开源项目,高度整合封装而成的高效,高性能,强安全性的开源Java EE快速开发平台。
JeeSite本身是以Spring Framework为核心容器,Spring MVC为模型视图控制器,MyBatis为数据访问层, Apache Shiro为权限授权层,Ehcahe对常用数据进行缓存,Activit为工作流
- 通过Spring Mail Api发送邮件
120153216
邮件main
原文地址:http://www.open-open.com/lib/view/open1346857871615.html
使用Java Mail API来发送邮件也很容易实现,但是最近公司一个同事封装的邮件API实在让我无法接受,于是便打算改用Spring Mail API来发送邮件,顺便记录下这篇文章。 【Spring Mail API】
Spring Mail API都在org.spri
- Pysvn 程序员使用指南
2002wmj
SVN
源文件:http://ju.outofmemory.cn/entry/35762
这是一篇关于pysvn模块的指南.
完整和详细的API请参考 http://pysvn.tigris.org/docs/pysvn_prog_ref.html.
pysvn是操作Subversion版本控制的Python接口模块. 这个API接口可以管理一个工作副本, 查询档案库, 和同步两个.
该
- 在SQLSERVER中查找被阻塞和正在被阻塞的SQL
357029540
SQL Server
SELECT R.session_id AS BlockedSessionID ,
S.session_id AS BlockingSessionID ,
Q1.text AS Block
- Intent 常用的用法备忘
7454103
.netandroidGoogleBlogF#
Intent
应该算是Android中特有的东西。你可以在Intent中指定程序 要执行的动作(比如:view,edit,dial),以及程序执行到该动作时所需要的资料 。都指定好后,只要调用startActivity(),Android系统 会自动寻找最符合你指定要求的应用 程序,并执行该程序。
下面列出几种Intent 的用法
显示网页:
- Spring定时器时间配置
adminjun
spring时间配置定时器
红圈中的值由6个数字组成,中间用空格分隔。第一个数字表示定时任务执行时间的秒,第二个数字表示分钟,第三个数字表示小时,后面三个数字表示日,月,年,< xmlnamespace prefix ="o" ns ="urn:schemas-microsoft-com:office:office" />
测试的时候,由于是每天定时执行,所以后面三个数
- POJ 2421 Constructing Roads 最小生成树
aijuans
最小生成树
来源:http://poj.org/problem?id=2421
题意:还是给你n个点,然后求最小生成树。特殊之处在于有一些点之间已经连上了边。
思路:对于已经有边的点,特殊标记一下,加边的时候把这些边的权值赋值为0即可。这样就可以既保证这些边一定存在,又保证了所求的结果正确。
代码:
#include <iostream>
#include <cstdio>
- 重构笔记——提取方法(Extract Method)
ayaoxinchao
java重构提炼函数局部变量提取方法
提取方法(Extract Method)是最常用的重构手法之一。当看到一个方法过长或者方法很难让人理解其意图的时候,这时候就可以用提取方法这种重构手法。
下面是我学习这个重构手法的笔记:
提取方法看起来好像仅仅是将被提取方法中的一段代码,放到目标方法中。其实,当方法足够复杂的时候,提取方法也会变得复杂。当然,如果提取方法这种重构手法无法进行时,就可能需要选择其他
- 为UILabel添加点击事件
bewithme
UILabel
默认情况下UILabel是不支持点击事件的,网上查了查居然没有一个是完整的答案,现在我提供一个完整的代码。
UILabel *l = [[UILabel alloc] initWithFrame:CGRectMake(60, 0, listV.frame.size.width - 60, listV.frame.size.height)]
- NoSQL数据库之Redis数据库管理(PHP-REDIS实例)
bijian1013
redis数据库NoSQL
一.redis.php
<?php
//实例化
$redis = new Redis();
//连接服务器
$redis->connect("localhost");
//授权
$redis->auth("lamplijie");
//相关操
- SecureCRT使用备注
bingyingao
secureCRT每页行数
SecureCRT日志和卷屏行数设置
一、使用securecrt时,设置自动日志记录功能。
1、在C:\Program Files\SecureCRT\下新建一个文件夹(也就是你的CRT可执行文件的路径),命名为Logs;
2、点击Options -> Global Options -> Default Session -> Edite Default Sett
- 【Scala九】Scala核心三:泛型
bit1129
scala
泛型类
package spark.examples.scala.generics
class GenericClass[K, V](val k: K, val v: V) {
def print() {
println(k + "," + v)
}
}
object GenericClass {
def main(args: Arr
- 素数与音乐
bookjovi
素数数学haskell
由于一直在看haskell,不可避免的接触到了很多数学知识,其中数论最多,如素数,斐波那契数列等,很多在学生时代无法理解的数学现在似乎也能领悟到那么一点。
闲暇之余,从图书馆找了<<The music of primes>>和<<世界数学通史>>读了几遍。其中素数的音乐这本书与软件界熟知的&l
- Java-Collections Framework学习与总结-IdentityHashMap
BrokenDreams
Collections
这篇总结一下java.util.IdentityHashMap。从类名上可以猜到,这个类本质应该还是一个散列表,只是前面有Identity修饰,是一种特殊的HashMap。
简单的说,IdentityHashMap和HashM
- 读《研磨设计模式》-代码笔记-享元模式-Flyweight
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.Collection;
import java.util.HashMap;
import java.util.List;
import java
- PS人像润饰&调色教程集锦
cherishLC
PS
1、仿制图章沿轮廓润饰——柔化图像,凸显轮廓
http://www.howzhi.com/course/retouching/
新建一个透明图层,使用仿制图章不断Alt+鼠标左键选点,设置透明度为21%,大小为修饰区域的1/3左右(比如胳膊宽度的1/3),再沿纹理方向(比如胳膊方向)进行修饰。
所有修饰完成后,对该润饰图层添加噪声,噪声大小应该和
- 更新多个字段的UPDATE语句
crabdave
update
更新多个字段的UPDATE语句
update tableA a
set (a.v1, a.v2, a.v3, a.v4) = --使用括号确定更新的字段范围
- hive实例讲解实现in和not in子句
daizj
hivenot inin
本文转自:http://www.cnblogs.com/ggjucheng/archive/2013/01/03/2842855.html
当前hive不支持 in或not in 中包含查询子句的语法,所以只能通过left join实现。
假设有一个登陆表login(当天登陆记录,只有一个uid),和一个用户注册表regusers(当天注册用户,字段只有一个uid),这两个表都包含
- 一道24点的10+种非人类解法(2,3,10,10)
dsjt
算法
这是人类算24点的方法?!!!
事件缘由:今天晚上突然看到一条24点状态,当时惊为天人,这NM叫人啊?以下是那条状态
朱明西 : 24点,算2 3 10 10,我LX炮狗等面对四张牌痛不欲生,结果跑跑同学扫了一眼说,算出来了,2的10次方减10的3次方。。我草这是人类的算24点啊。。
然后么。。。我就在深夜很得瑟的问室友求室友算
刚出完题,文哥的暴走之旅开始了
5秒后
- 关于YII的菜单插件 CMenu和面包末breadcrumbs路径管理插件的一些使用问题
dcj3sjt126com
yiiframework
在使用 YIi的路径管理工具时,发现了一个问题。 <?php  
- 对象与关系之间的矛盾:“阻抗失配”效应[转]
come_for_dream
对象
概述
“阻抗失配”这一词组通常用来描述面向对象应用向传统的关系数据库(RDBMS)存放数据时所遇到的数据表述不一致问题。C++程序员已经被这个问题困扰了好多年,而现在的Java程序员和其它面向对象开发人员也对这个问题深感头痛。
“阻抗失配”产生的原因是因为对象模型与关系模型之间缺乏固有的亲合力。“阻抗失配”所带来的问题包括:类的层次关系必须绑定为关系模式(将对象
- 学习编程那点事
gcq511120594
编程互联网
一年前的夏天,我还在纠结要不要改行,要不要去学php?能学到真本事吗?改行能成功吗?太多的问题,我终于不顾一切,下定决心,辞去了工作,来到传说中的帝都。老师给的乘车方式还算有效,很顺利的就到了学校,赶巧了,正好学校搬到了新校区。先安顿了下来,过了个轻松的周末,第一次到帝都,逛逛吧!
接下来的周一,是我噩梦的开始,学习内容对我这个零基础的人来说,除了勉强完成老师布置的作业外,我已经没有时间和精力去
- Reverse Linked List II
hcx2013
list
Reverse a linked list from position m to n. Do it in-place and in one-pass.
For example:Given 1->2->3->4->5->NULL, m = 2 and n = 4,
return 
- Spring4.1新特性——页面自动化测试框架Spring MVC Test HtmlUnit简介
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- Hadoop集群工具distcp
liyonghui160com
1. 环境描述
两个集群:rock 和 stone
rock无kerberos权限认证,stone有要求认证。
1. 从rock复制到stone,采用hdfs
Hadoop distcp -i hdfs://rock-nn:8020/user/cxz/input hdfs://stone-nn:8020/user/cxz/运行在rock端,即源端问题:报版本
- 一个备份MySQL数据库的简单Shell脚本
pda158
mysql脚本
主脚本(用于备份mysql数据库): 该Shell脚本可以自动备份
数据库。只要复制粘贴本脚本到文本编辑器中,输入数据库用户名、密码以及数据库名即可。我备份数据库使用的是mysqlump 命令。后面会对每行脚本命令进行说明。
1. 分别建立目录“backup”和“oldbackup” #mkdir /backup #mkdir /oldbackup
- 300个涵盖IT各方面的免费资源(中)——设计与编码篇
shoothao
IT资源图标库图片库色彩板字体
A. 免费的设计资源
Freebbble:来自于Dribbble的免费的高质量作品。
Dribbble:Dribbble上“免费”的搜索结果——这是巨大的宝藏。
Graphic Burger:每个像素点都做得很细的绝佳的设计资源。
Pixel Buddha:免费和优质资源的专业社区。
Premium Pixels:为那些有创意的人提供免费的素材。
- thrift总结 - 跨语言服务开发
uule
thrift
官网
官网JAVA例子
thrift入门介绍
IBM-Apache Thrift - 可伸缩的跨语言服务开发框架
Thrift入门及Java实例演示
thrift的使用介绍
RPC
POM:
<dependency>
<groupId>org.apache.thrift</groupId>