作者 | News
编辑 | 安可
出品 | 磐创AI团队出品
【磐创AI 导读】:本篇文章讲解了PyTorch专栏的第四章中的微调基于torchvision 0.3的目标检测模型。查看专栏历史文章,请点击下方蓝色字体进入相应链接阅读。查看关于本专栏的介绍:PyTorch专栏开篇。想要更多电子杂志的机器学习,深度学习资源,大家欢迎点击上方蓝字关注我们的公众号:磐创AI。
torch.utils.data.Dataset
继承而来,并实现
_len
和
_getitem_
__getitem__
应该返回:* 图像:PIL图像大小(H,W) * 目标:包含以下字段的字典boxes(FloatTensor[N,4])
:N边框(bounding boxes)坐标的格式[x0,x1,y0,y1],取值范围是0到W,0到H。labels(Int64Tensor[N])
:每个边框的标签。image_id(Int64Tensor[1])
:图像识别器,它应该在数据集中的所有图像中是唯一的,并在评估期间使用。area(Tensor[N])
:边框的面积,在使用COCO指标进行评估时使用此项来分隔小、中和大框之间的度量标准得分。iscrowed(UInt8Tensor[N,H,W])
:在评估期间属性设置为
iscrowed=True
的实例会被忽略。masks(UInt8Tesor[N,H,W])
:每个对象的分段掩码。keypoints (FloatTensor[N, K, 3]
:对于N个对象中的每一个,它包含[x,y,visibility]格式的K个关键点,用 于定义对象。
visibility = 0
表示关键点不可见。请注意,对于数据扩充,翻转关键点的概念取决于数据表示,您应该调整 reference/detection/transforms.py 以用于新的关键点表示。get_height_and_width
方法, 该方法返回图像的高度和宽度。如果未提供此方法,我们将通过
__getitem__
查询数据集的所有元素,这会将图像加载到内存中,但比提供自定义方法时要慢。
torch.utils.data.Dataset
类。
import os
import numpy as np
import torch
from PIL import Image
class PennFudanDataset(object):
def __init__(self, root, transforms):
self.root = root
self.transforms = transforms
# 下载所有图像文件,为其排序
# 确保它们对齐
self.imgs = list(sorted(os.listdir(os.path.join(root, "PNGImages"))))
self.masks = list(sorted(os.listdir(os.path.join(root, "PedMasks"))))
def __getitem__(self, idx):
# load images ad masks
img_path = os.path.join(self.root, "PNGImages", self.imgs[idx])
mask_path = os.path.join(self.root, "PedMasks", self.masks[idx])
img = Image.open(img_path).convert("RGB")
# 请注意我们还没有将mask转换为RGB,
# 因为每种颜色对应一个不同的实例
# 0是背景
mask = Image.open(mask_path)
# 将PIL图像转换为numpy数组
mask = np.array(mask)
# 实例被编码为不同的颜色
obj_ids = np.unique(mask)
# 第一个id是背景,所以删除它
obj_ids = obj_ids[1:]
# 将颜色编码的mask分成一组
# 二进制格式
masks = mask == obj_ids[:, None, None]
# 获取每个mask的边界框坐标
num_objs = len(obj_ids)
boxes = []
for i in range(num_objs):
pos = np.where(masks[i])
xmin = np.min(pos[1])
xmax = np.max(pos[1])
ymin = np.min(pos[0])
ymax = np.max(pos[0])
boxes.append([xmin, ymin, xmax, ymax])
# 将所有转换为torch.Tensor
boxes = torch.as_tensor(boxes, dtype=torch.float32)
# 这里仅有一个类
labels = torch.ones((num_objs,), dtype=torch.int64)
masks = torch.as_tensor(masks, dtype=torch.uint8)
image_id = torch.tensor([idx])
area = (boxes[:, 3] - boxes[:, 1]) * (boxes[:, 2] - boxes[:, 0])
# 假设所有实例都不是人群
iscrowd = torch.zeros((num_objs,), dtype=torch.int64)
target = {}
target["boxes"] = boxes
target["labels"] = labels
target["masks"] = masks
target["image_id"] = image_id
target["area"] = area
target["iscrowd"] = iscrowd
if self.transforms is not None:
img, target = self.transforms(img, target)
return img, target
def __len__(self):
return len(self.imgs)
torchvision modelzoo
中的一个可用模型。第一个是我们想要从预先训练的模型开始,然后微调最后一层。另一种是当我们想要用不同的模型替换模型的主干时(例如,用于更快的预测)。
1 微调已经预训练的模型 让我们假设你想从一个在COCO上已预先训练过的模型开始,并希望为你的特定类进行微调。这是一种可行的方法:
import torchvision
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor
# 在COCO上加载经过预训练的预训练模型
model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True)
# replace the classifier with a new one, that has
# 将分类器替换为具有用户定义的 num_classes的新分类器
num_classes = 2 # 1 class (person) + background
# 获取分类器的输入参数的数量
in_features = model.roi_heads.box_predictor.cls_score.in_features
# 用新的头部替换预先训练好的头部
model.roi_heads.box_predictor = FastRCNNPredictor(in_features, num_classes)
import torchvision
from torchvision.models.detection import FasterRCNN
from torchvision.models.detection.rpn import AnchorGenerator
# 加载预先训练的模型进行分类和返回
# 只有功能
backbone = torchvision.models.mobilenet_v2(pretrained=True).features
# FasterRCNN需要知道骨干网中的输出通道数量。对于mobilenet_v2,它是1280,所以我们需要在这里添加它
backbone.out_channels = 1280
# 我们让RPN在每个空间位置生成5 x 3个锚点
# 具有5种不同的大小和3种不同的宽高比。
# 我们有一个元组[元组[int]]
# 因为每个特征映射可能具有不同的大小和宽高比
anchor_generator = AnchorGenerator(sizes=((32, 64, 128, 256, 512),),
aspect_ratios=((0.5, 1.0, 2.0),))
# 定义一下我们将用于执行感兴趣区域裁剪的特征映射,以及重新缩放后裁剪的大小。
# 如果您的主干返回Tensor,则featmap_names应为[0]。
# 更一般地,主干应该返回OrderedDict [Tensor]
# 并且在featmap_names中,您可以选择要使用的功能映射。
roi_pooler = torchvision.ops.MultiScaleRoIAlign(featmap_names=[0],
output_size=7,
sampling_ratio=2)
# 将这些pieces放在FasterRCNN模型中
model = FasterRCNN(backbone,
num_classes=2,
rpn_anchor_generator=anchor_generator,
box_roi_pool=roi_pooler)
import torchvision
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor
from torchvision.models.detection.mask_rcnn import MaskRCNNPredictor
def get_model_instance_segmentation(num_classes):
# 加载在COCO上预训练的预训练的实例分割模型
model = torchvision.models.detection.maskrcnn_resnet50_fpn(pretrained=True)
# 获取分类器的输入特征数
in_features = model.roi_heads.box_predictor.cls_score.in_features
# 用新的头部替换预先训练好的头部
model.roi_heads.box_predictor = FastRCNNPredictor(in_features, num_classes)
# 现在获取掩膜分类器的输入特征数
in_features_mask = model.roi_heads.mask_predictor.conv5_mask.in_channels
hidden_layer = 256
# 并用新的掩膜预测器替换掩膜预测器
model.roi_heads.mask_predictor = MaskRCNNPredictor(in_features_mask,
hidden_layer,
num_classes)
return model
references/detection/
中,我们有许多辅助函数来简化训练和评估检测模型。在这里,我们将使用
references/detection/engine.py
,
references/detection/utils.py
和
references/detection/transforms.py
。只需将它们复制到您的文件夹并在此处使用它们。
import transforms as T
def get_transform(train):
transforms = []
transforms.append(T.ToTensor())
if train:
transforms.append(T.RandomHorizontalFlip(0.5))
return T.Compose(transforms)
from engine import train_one_epoch, evaluate
import utils
def main():
# 在GPU上训练,若无GPU,可选择在CPU上训练
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
# 我们的数据集只有两个类 - 背景和人
num_classes = 2
# 使用我们的数据集和定义的转换
dataset = PennFudanDataset('PennFudanPed', get_transform(train=True))
dataset_test = PennFudanDataset('PennFudanPed', get_transform(train=False))
# 在训练和测试集中拆分数据集
indices = torch.randperm(len(dataset)).tolist()
dataset = torch.utils.data.Subset(dataset, indices[:-50])
dataset_test = torch.utils.data.Subset(dataset_test, indices[-50:])
# 定义训练和验证数据加载器
data_loader = torch.utils.data.DataLoader(
dataset, batch_size=2, shuffle=True, num_workers=4,
collate_fn=utils.collate_fn)
data_loader_test = torch.utils.data.DataLoader(
dataset_test, batch_size=1, shuffle=False, num_workers=4,
collate_fn=utils.collate_fn)
# 使用我们的辅助函数获取模型
model = get_model_instance_segmentation(num_classes)
# 将我们的模型迁移到合适的设备
model.to(device)
# 构造一个优化器
params = [p for p in model.parameters() if p.requires_grad]
optimizer = torch.optim.SGD(params, lr=0.005,
momentum=0.9, weight_decay=0.0005)
# 和学习率调度程序
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer,
step_size=3,
gamma=0.1)
# 训练10个epochs
num_epochs = 10
for epoch in range(num_epochs):
# 训练一个epoch,每10次迭代打印一次
train_one_epoch(model, optimizer, data_loader, device, epoch, print_freq=10)
# 更新学习速率
lr_scheduler.step()
# 在测试集上评价
evaluate(model, data_loader_test, device=device)
print("That's it!")
torch.utils.data.Dataset
类, 它返回图像以及地面实况框和分割掩码。您还利用了在COCO train2017上预训练的Mask R-CNN模型,以便对此新数据集执行传输学习。
references/detection/train.py
。