- ZooKeeper在Hadoop中的协同应用:从NameNode选主到分布式锁实现
码字的字节
hadoop布道师分布式zookeeperhadoop分布式锁
Hadoop与ZooKeeper概述Hadoop与ZooKeeper在大数据生态系统中的核心位置和交互关系Hadoop的架构与核心组件作为大数据处理的基石,Hadoop生态系统由多个关键组件构成。其核心架构主要包含HDFS(HadoopDistributedFileSystem)和YARN(YetAnotherResourceNegotiator)两大模块。HDFS采用主从架构设计,由NameNo
- HDFS常用命令
BenChuat
大数据学习hdfshadoop大数据
常用命令说明:-put和-get:上传和下载文件,是HDFS和本地文件系统交互的关键命令。-rm和-mkdir:删除和创建文件/目录,-rm支持递归删除。-ls和-cat:文件查看操作中最常用的命令,分别用于列出文件和查看内容。权限管理:通过-chmod、-chown和-chgrp命令对HDFS文件的权限、所有者和所属组进行管理。检查文件状态:通过-stat和-checksum命令,可以查看文件的
- Hadoop中MapReduce和Yarn相关内容详解
接上一章写的HDFS说,Hadoop是一个适合海量数据的分布式存储和分布式计算的一个平台,上一章介绍了分布式存储,这一章介绍一下分布式计算——MapReduce。一、MapReduce设计理念map——>映射Reduce——>归纳mapreduce是一种必须构建在hadoop之上的大数据离线计算框架。因为mapreduce是给予磁盘IO来计算存储文件的,所以它具有一定的延时性,因此一般用来处理离线
- 大数据领域Hadoop集群搭建的详细步骤
AI天才研究院
ChatGPT实战ChatGPTAI大模型应用入门实战与进阶大数据hadoop分布式ai
大数据领域Hadoop集群搭建的详细步骤关键词:Hadoop集群、HDFS、YARN、大数据平台、分布式系统、集群配置、故障排查摘要:Hadoop作为大数据领域的基石框架,其集群搭建是数据工程师和运维人员的核心技能。本文从Hadoop核心架构出发,结合生产环境实践,详细讲解从环境准备、配置文件调优到集群启动验证的全流程,并涵盖常见问题排查与最佳实践。无论你是初学者还是需要优化现有集群的工程师,本文
- Hive/Spark小文件解决方案(企业级实战)–参数和SQL优化
陆水A
大数据hivehadoopsparkpython
重点是后面的参数优化一、小文件的定义在Hadoop的上下文中,小文件的定义是相对于Hadoop分布式文件系统(HDFS)的块(Block)大小而言的。HDFS是Hadoop生态系统中的核心组件之一,它设计用于存储和处理大规模数据集。在HDFS中,数据被分割成多个块,每个块的大小是固定的,这个大小在Hadoop的不同版本和配置中可能有所不同,但常见的默认块大小包括128MB、256MB等。基于这个背
- C++与Hive、Spark、libhdfs、ACID交互技巧
KENYCHEN奉孝
C++开发语言springC++hivespark
C++与Hive交互的实例以下是C++与Hive交互的实例代码片段,涵盖连接、查询、数据操作等常见场景。假设使用libhdfs或thrift接口实现,部分示例需要结合Hive环境配置。基础连接与查询示例1:通过Thrift连接HiveServer2#include#include#includeusingnamespaceapache::thrift;usingnamespaceapache::h
- Spark大数据处理讲课笔记4.8 Spark SQL典型案例
酒城译痴无心剑
#Spark基础学习笔记(1)spark笔记sql
文章目录零、本讲学习目标一、使用SparkSQL实现词频统计(一)提出任务(二)实现任务1、准备数据文件2、创建Maven项目3、修改源程序目录4、添加依赖和设置源程序目录5、创建日志属性文件6、创建HDFS配置文件7、创建词频统计单例对象8、启动程序,查看结果9、词频统计数据转化流程图二、使用SparkSQL计算总分与平均分(一)提出任务(二)完成任务1、准备数据文件2、新建Maven项目3、修
- 【大数据学习 | Spark-Core】RDD的概念与Spark任务的执行流程
Vez'nan的幸福生活
大数据sparkoraclesqljson
1.RDD的设计背景在实际应用中,存在许多迭代式计算,这些应用场景的共同之处是,不同计算阶段之间会重用中间结果,即一个阶段的输出结果会作为下一个阶段的输入。但是,目前的MapReduce框架都是把中间结果写入到HDFS中,带来了大量的数据复制、磁盘IO和序列化开销。显然,如果能将结果保存在内存当中,就可以大量减少IO。RDD就是为了满足这种需求而出现的,它提供了一个抽象的数据架构,我们不必担心底层
- 数据库和数据仓库区别
hhhecker
Hadoop学习数据仓库数据库hive
HIve与Mysql对比HiveMysql数据存储位置HDFS本地磁盘数据格式用户定义系统决定数据更新不支持(不支持修改和删除)支持(支持增删改查)索引有,但较弱,一般很少用有,经常使用的执行MapReduceExecutor执行延迟高低可扩展性高低数据规模大小数据库与数据仓库对比数据库:传统的关系型数据库主要应用在基本的事务处理,例如银行交易之类的场景数据库支持增删改查这些常见的操作。数据仓库:
- Spark RDD 之 Partition
博弈史密斯
SparkRDD怎么理解RDD的粗粒度模式?对比细粒度模式SparkRDD的task数量是由什么决定的?一份待处理的原始数据会被按照相应的逻辑(例如jdbc和hdfs的split逻辑)切分成n份,每份数据对应到RDD中的一个Partition,Partition的数量决定了task的数量,影响着程序的并行度支持保存点(checkpoint)虽然RDD可以通过lineage实现faultrecove
- 深入解析Hadoop中的Region分裂与合并机制
码字的字节
hadoop布道师hadoop大数据分布式Region分裂合并
Hadoop与Region的基本概念Hadoop的分布式架构基础作为大数据处理的核心框架,Hadoop通过分布式存储和计算解决了海量数据的处理难题。其架构核心由HDFS(HadoopDistributedFileSystem)和MapReduce组成,前者负责数据的分布式存储,后者实现分布式计算。在HDFS中,数据被分割成固定大小的块(默认128MB)分散存储在集群节点上,而MapReduce则通
- 大数据技术关键技术组件
大数据技术是一组用于处理、分析和管理大规模数据集的复杂方法和技术。这些数据集的特点是容量大、增长速度快,且结构多样化,包括结构化、半结构化和非结构化数据。传统数据库管理和分析工具在处理此类数据时效率低下或无法胜任,因此需要专门的大数据技术栈来支持高效的数据处理和智能决策。大数据技术的关键组件通常包括:分布式存储系统:HadoopDistributedFileSystem(HDFS):一个高度可扩展
- 大数据领域HDFS的集群资源管理优化
大数据洞察
大数据与AI人工智能大数据AI应用大数据hdfshadoopai
大数据领域HDFS的集群资源管理优化关键词:HDFS;集群资源管理;存储优化;性能调优;副本策略;负载均衡;NameNode优化摘要:HDFS(Hadoop分布式文件系统)作为大数据领域的基石,承载着海量数据的存储与管理重任。随着数据规模爆炸式增长和业务复杂度提升,HDFS集群的资源管理面临着"存不下、跑不快、管不好"的三重挑战:存储资源浪费与不足并存、计算与存储资源匹配失衡、集群运维效率低下。本
- 深入探索Hadoop技术:全面学习指南
引言在大数据时代,高效地存储、处理和分析海量数据已成为企业决策与创新的关键驱动力。Hadoop,作为开源的大数据处理框架,以其强大的分布式存储和并行计算能力,以及丰富的生态系统,为企业提供了应对大规模数据挑战的有效解决方案。本文旨在为初学者和进阶者提供一份详尽的Hadoop技术学习指南,涵盖HDFS、MapReduce、YARN等核心组件,以及Hive、Pig、HBase等生态系统工具,助您踏上H
- HDFS文件系统
HDFS文件系统是hadoop生态系统的核心,主要用于分布式文件存储,它具备高可用,流式读取,文件结构简单,跨平台的特点,它的集群采用的是主从结构,分为命名节点和数据节点,命名节点主要用于元数据管理(例如对目录,文件的创建,数据块与数据节点的关系维护管理)及数据节点管理(例如数据节点之间数据的复制,节点状态的维护,节点间数据的均衡),该文件系统最基本的存储单位是block即数据块,默认大小是64M
- Flink-Hadoop实战项目
Dylan_muc
hadoophdfsflink
项目说明文档1.项目概述1.1项目简介本项目是一个基于ApacheFlink的大数据流处理平台,专门用于处理铁路系统的票务和车次信息数据。系统包含两个核心流处理作业:文件处理作业和数据合并作业,采用定时调度机制,支持Kerberos安全认证,实现从文件读取到数据仓库存储的完整数据处理链路。1.2技术栈流处理引擎:ApacheFlink1.18.1存储系统:HDFS(Hadoop分布式文件系统)数据
- 大数据集群运维常见的一些问题以及处理方式
态);若为YARN节点,重启NodeManager后手动将其加入集群。若为节点整体宕机:排查电源和网络,重启节点后,依次启动HDFS、YARN等服务进程,确认数据块完整性(避免因节点宕机导致副本不足)。2.网络问题现象:节点间通信超时(如HDFS心跳超时、YARN任务调度延迟)、数据传输卡顿。可能原因:交换机故障、网线松动、网络带宽过载、防火墙规则拦截。处理方式:用ping、traceroute检
- hadoop 集群问题处理
一切顺势而行
hadoop大数据分布式
1.1.JournalNode的作用在HDFSHA配置中,为了实现两个NameNode之间的状态同步和故障自动切换,Hadoop使用了一组JournalNode来管理共享的编辑日志。具体来说,JournalNode的主要职责包括:共享编辑日志:JournalNode节点组成了一个分布式系统,用于存储HDFS的编辑日志(EditLogs)。这两个日志文件记录了对HDFS所做的所有更改,如文件创建、删
- sqoop从mysql导数据到hdfs,出现java.lang.ClassNotFoundException: Class QueryResult not found
无级程序员
大数据sqoopmysqlhdfs
运行sqoop从postgresql/mysql导入数据到hdfs,结果出现如下错误:2025-07-1816:59:13,624INFOorm.CompilationManager:HADOOP_MAPRED_HOMEis/opt/datasophon/hadoop-3.3.3Note:/opt/sqoop/bin/QueryResult.javausesoroverridesadeprecat
- hive的sql优化思路-明白底层运行逻辑
ycllycll
hivesqlhadoop
一、首先要明白底层map、shuffle、reduce的顺序之中服务器hdfs数据文件在内存与存储之中是怎么演变的,因为hive的性能瓶颈基本在内存,具体参考以下他人优秀文章:1.HiveSQL底层执行过程详细剖析2.HiveJOIN性能调优二是要明白hive对应的sql它底层的mapreduce的过程中sql字段的执行顺序,来理解map的key、value会填充什么值,才能深刻理解怎么一步一步的
- 六、深度剖析 Hadoop 分布式文件系统(HDFS)的数据存储机制与读写流程
深度剖析Hadoop分布式文件系统(HDFS)的数据存储机制与读写流程在当今大数据领域当中,Hadoop分布式文件系统(HDFS)作为极为关键的核心组件之一,为海量规模的数据的存储以及处理构筑起了坚实无比的根基。本文将会对HDFS的数据存储机制以及读写流程展开全面且深入的探究,通过将原理与实际的实例紧密结合的方式,助力广大读者更加全面地理解HDFS的工作原理以及其具体的应用场景。一、HDFS概述H
- 大数据处理技术:分布式文件系统HDFS
茜茜西西CeCe
hdfshadoop大数据HDFS-JAVA接口文件头歌Java
目录1实验名称:2实验目的3实验内容4实验原理5实验过程或源代码5.1HDFS的基本操作5.2HDFS-JAVA接口之读取文件5.3HDFS-JAVA接口之上传文件5.4HDFS-JAVA接口之删除文件6实验结果6.1HDFS的基本操作6.2HDFS-JAVA接口之读取文件6.3HDFS-JAVA接口之上传文件6.4HDFS-JAVA接口之删除文件1实验名称:分布式文件系统HDFS2实验目的1.理
- cdh6.3.2的hive使用apache paimon格式只能创建不能写报错的问题
明天,今天,此时
hivepaimon
前言 根据官网paimon安装教程,看上去简单,实则报错阻碍使用的信心。解决方法 原带的jars下的zstd开头的包旧了,重新下载zstd较新的包单独放到每个节点的hive/lib下; 然后将hdfsyarn用户下的mr-framework.tar.gz中的zstdjar包替换成新的版本。 重启就可以了总结 国外软件问题,尽量使用英文搜索,特别是google.。方法来源:http
- Hadoop与云原生集成:弹性扩缩容与OSS存储分离架构深度解析
Hadoop与云原生集成的必要性Hadoop在大数据领域的基石地位作为大数据处理领域的奠基性技术,Hadoop自2006年诞生以来已形成包含HDFS、YARN、MapReduce三大核心组件的完整生态体系。根据CSDN技术社区的分析报告,全球超过75%的《财富》500强企业仍在使用Hadoop处理EB级数据,其分布式文件系统HDFS通过数据分片(默认128MB块大小)和三副本存储机制,成功解决了P
- ETL可视化工具 DataX -- 简介( 一)
dazhong2012
软件工具数据仓库dataxETL
引言DataX系列文章:ETL可视化工具DataX–安装部署(二)ETL可视化工具DataX–DataX-Web安装(三)1.1DataX1.1.1DataX概览DataX是阿里云DataWorks数据集成的开源版本,在阿里巴巴集团内被广泛使用的离线数据同步工具/平台。DataX实现了包括MySQL、Oracle、OceanBase、SqlServer、Postgre、HDFS、Hive、ADS、
- Hive简介
文章目录Hive简介Hive特点Hive和RDBMS的对比Hive的架构Hive的数据组织Hive数据类型Hive简介1、Hive由Facebook实现并开源2、是基于Hadoop的一个数据仓库工具3、可以将结构化的数据映射为一张数据库表4、并提供HQL(HiveSQL)查询功能5、底层数据是存储在HDFS上6、Hive的本质是将SQL语句转换为MapReduce任务运行7、使不熟悉MapRedu
- ftp文件服务器有连接数限制,查看ftp服务器连接数命令
赵承铭
ftp文件服务器有连接数限制
查看ftp服务器连接数命令内容精选换一换本章节适用于MRS3.x之前版本。Loader支持以下多种连接,每种连接的配置介绍可根据本章节内容了解。obs-connectorgeneric-jdbc-connectorftp-connector或sftp-connectorhbase-connector、hdfs-connector或hive-connectorOBS连接是Loa“数据导入”章节适用于
- ClickHouse高频面试题
野老杂谈
数据库
ClickHouse高频面试题1、简单介绍一下ClickHouse2、ClickHouse具有哪些特点3、ClickHouse作为一款高性能OLAP数据库,存在哪些不足4、ClickHouse有哪些表引擎5、介绍下Log系列表引擎应用场景共性特点不支持6、简单介绍下MergeTree系列引擎7、简单介绍下外部集成表引擎ODBCJDBCMySQLHDFSKafkaRabbitMQ8、ClickHou
- HDFS 伪分布模式搭建与使用全攻略(适合初学者 & 开发测试环境)
huihui450
hdfshadoop大数据
HDFS(HadoopDistributedFileSystem)作为Hadoop生态系统的核心组件,广泛应用于海量数据的分布式存储场景。对于开发者而言,伪分布模式提供了一种低成本、高还原度的学习与测试方式。本文将详细介绍如何在本地搭建并使用HDFS的伪分布模式,包括环境准备、配置过程、常用命令及常见问题排查,帮助你快速入门Hadoop分布式文件系统的实践操作。一、什么是伪分布模式?Hadoop有
- MapReduce学习笔记
1.MapReduce做什么Mapper负责“分”,即把复杂的任务分解为若干个“简单的任务”来处理。Reducer负责对map阶段的结果进行汇总。2.MapReduce工作机制实体一:客户端,用来提交MapReduce作业。实体二:JobTracker,用来协调作业的运行。实体三:TaskTracker,用来处理作业划分后的任务。实体四:HDFS,用来在其它实体间共享作业文件。3.编写MapRed
- 关于旗正规则引擎下载页面需要弹窗保存到本地目录的问题
何必如此
jsp超链接文件下载窗口
生成下载页面是需要选择“录入提交页面”,生成之后默认的下载页面<a>标签超链接为:<a href="<%=root_stimage%>stimage/image.jsp?filename=<%=strfile234%>&attachname=<%=java.net.URLEncoder.encode(file234filesourc
- 【Spark九十八】Standalone Cluster Mode下的资源调度源代码分析
bit1129
cluster
在分析源代码之前,首先对Standalone Cluster Mode的资源调度有一个基本的认识:
首先,运行一个Application需要Driver进程和一组Executor进程。在Standalone Cluster Mode下,Driver和Executor都是在Master的监护下给Worker发消息创建(Driver进程和Executor进程都需要分配内存和CPU,这就需要Maste
- linux上独立安装部署spark
daizj
linux安装spark1.4部署
下面讲一下linux上安装spark,以 Standalone Mode 安装
1)首先安装JDK
下载JDK:jdk-7u79-linux-x64.tar.gz ,版本是1.7以上都行,解压 tar -zxvf jdk-7u79-linux-x64.tar.gz
然后配置 ~/.bashrc&nb
- Java 字节码之解析一
周凡杨
java字节码javap
一: Java 字节代码的组织形式
类文件 {
OxCAFEBABE ,小版本号,大版本号,常量池大小,常量池数组,访问控制标记,当前类信息,父类信息,实现的接口个数,实现的接口信息数组,域个数,域信息数组,方法个数,方法信息数组,属性个数,属性信息数组
}
&nbs
- java各种小工具代码
g21121
java
1.数组转换成List
import java.util.Arrays;
Arrays.asList(Object[] obj); 2.判断一个String型是否有值
import org.springframework.util.StringUtils;
if (StringUtils.hasText(str)) 3.判断一个List是否有值
import org.spring
- 加快FineReport报表设计的几个心得体会
老A不折腾
finereport
一、从远程服务器大批量取数进行表样设计时,最好按“列顺序”取一个“空的SQL语句”,这样可提高设计速度。否则每次设计时模板均要从远程读取数据,速度相当慢!!
二、找一个富文本编辑软件(如NOTEPAD+)编辑SQL语句,这样会很好地检查语法。有时候带参数较多检查语法复杂时,结合FineReport中生成的日志,再找一个第三方数据库访问软件(如PL/SQL)进行数据检索,可以很快定位语法错误。
- mysql linux启动与停止
墙头上一根草
如何启动/停止/重启MySQL一、启动方式1、使用 service 启动:service mysqld start2、使用 mysqld 脚本启动:/etc/inint.d/mysqld start3、使用 safe_mysqld 启动:safe_mysqld&二、停止1、使用 service 启动:service mysqld stop2、使用 mysqld 脚本启动:/etc/inin
- Spring中事务管理浅谈
aijuans
spring事务管理
Spring中事务管理浅谈
By Tony Jiang@2012-1-20 Spring中对事务的声明式管理
拿一个XML举例
[html]
view plain
copy
print
?
<?xml version="1.0" encoding="UTF-8"?>&nb
- php中隐形字符65279(utf-8的BOM头)问题
alxw4616
php中隐形字符65279(utf-8的BOM头)问题
今天遇到一个问题. php输出JSON 前端在解析时发生问题:parsererror.
调试:
1.仔细对比字符串发现字符串拼写正确.怀疑是 非打印字符的问题.
2.逐一将字符串还原为unicode编码. 发现在字符串头的位置出现了一个 65279的非打印字符.
 
- 调用对象是否需要传递对象(初学者一定要注意这个问题)
百合不是茶
对象的传递与调用技巧
类和对象的简单的复习,在做项目的过程中有时候不知道怎样来调用类创建的对象,简单的几个类可以看清楚,一般在项目中创建十几个类往往就不知道怎么来看
为了以后能够看清楚,现在来回顾一下类和对象的创建,对象的调用和传递(前面写过一篇)
类和对象的基础概念:
JAVA中万事万物都是类 类有字段(属性),方法,嵌套类和嵌套接
- JDK1.5 AtomicLong实例
bijian1013
javathreadjava多线程AtomicLong
JDK1.5 AtomicLong实例
类 AtomicLong
可以用原子方式更新的 long 值。有关原子变量属性的描述,请参阅 java.util.concurrent.atomic 包规范。AtomicLong 可用在应用程序中(如以原子方式增加的序列号),并且不能用于替换 Long。但是,此类确实扩展了 Number,允许那些处理基于数字类的工具和实用工具进行统一访问。
 
- 自定义的RPC的Java实现
bijian1013
javarpc
网上看到纯java实现的RPC,很不错。
RPC的全名Remote Process Call,即远程过程调用。使用RPC,可以像使用本地的程序一样使用远程服务器上的程序。下面是一个简单的RPC 调用实例,从中可以看到RPC如何
- 【RPC框架Hessian一】Hessian RPC Hello World
bit1129
Hello world
什么是Hessian
The Hessian binary web service protocol makes web services usable without requiring a large framework, and without learning yet another alphabet soup of protocols. Because it is a binary p
- 【Spark九十五】Spark Shell操作Spark SQL
bit1129
shell
在Spark Shell上,通过创建HiveContext可以直接进行Hive操作
1. 操作Hive中已存在的表
[hadoop@hadoop bin]$ ./spark-shell
Spark assembly has been built with Hive, including Datanucleus jars on classpath
Welcom
- F5 往header加入客户端的ip
ronin47
when HTTP_RESPONSE {if {[HTTP::is_redirect]}{ HTTP::header replace Location [string map {:port/ /} [HTTP::header value Location]]HTTP::header replace Lo
- java-61-在数组中,数字减去它右边(注意是右边)的数字得到一个数对之差. 求所有数对之差的最大值。例如在数组{2, 4, 1, 16, 7, 5,
bylijinnan
java
思路来自:
http://zhedahht.blog.163.com/blog/static/2541117420116135376632/
写了个java版的
public class GreatestLeftRightDiff {
/**
* Q61.在数组中,数字减去它右边(注意是右边)的数字得到一个数对之差。
* 求所有数对之差的最大值。例如在数组
- mongoDB 索引
开窍的石头
mongoDB索引
在这一节中我们讲讲在mongo中如何创建索引
得到当前查询的索引信息
db.user.find(_id:12).explain();
cursor: basicCoursor 指的是没有索引
&
- [硬件和系统]迎峰度夏
comsci
系统
从这几天的气温来看,今年夏天的高温天气可能会维持在一个比较长的时间内
所以,从现在开始准备渡过炎热的夏天。。。。
每间房屋要有一个落地电风扇,一个空调(空调的功率和房间的面积有密切的关系)
坐的,躺的地方要有凉垫,床上要有凉席
电脑的机箱
- 基于ThinkPHP开发的公司官网
cuiyadll
行业系统
后端基于ThinkPHP,前端基于jQuery和BootstrapCo.MZ 企业系统
轻量级企业网站管理系统
运行环境:PHP5.3+, MySQL5.0
系统预览
系统下载:http://www.tecmz.com
预览地址:http://co.tecmz.com
各种设备自适应
响应式的网站设计能够对用户产生友好度,并且对于
- Transaction and redelivery in JMS (JMS的事务和失败消息重发机制)
darrenzhu
jms事务承认MQacknowledge
JMS Message Delivery Reliability and Acknowledgement Patterns
http://wso2.com/library/articles/2013/01/jms-message-delivery-reliability-acknowledgement-patterns/
Transaction and redelivery in
- Centos添加硬盘完全教程
dcj3sjt126com
linuxcentoshardware
Linux的硬盘识别:
sda 表示第1块SCSI硬盘
hda 表示第1块IDE硬盘
scd0 表示第1个USB光驱
一般使用“fdisk -l”命
- yii2 restful web服务路由
dcj3sjt126com
PHPyii2
路由
随着资源和控制器类准备,您可以使用URL如 http://localhost/index.php?r=user/create访问资源,类似于你可以用正常的Web应用程序做法。
在实践中,你通常要用美观的URL并采取有优势的HTTP动词。 例如,请求POST /users意味着访问user/create动作。 这可以很容易地通过配置urlManager应用程序组件来完成 如下所示
- MongoDB查询(4)——游标和分页[八]
eksliang
mongodbMongoDB游标MongoDB深分页
转载请出自出处:http://eksliang.iteye.com/blog/2177567 一、游标
数据库使用游标返回find的执行结果。客户端对游标的实现通常能够对最终结果进行有效控制,从shell中定义一个游标非常简单,就是将查询结果分配给一个变量(用var声明的变量就是局部变量),便创建了一个游标,如下所示:
> var
- Activity的四种启动模式和onNewIntent()
gundumw100
android
Android中Activity启动模式详解
在Android中每个界面都是一个Activity,切换界面操作其实是多个不同Activity之间的实例化操作。在Android中Activity的启动模式决定了Activity的启动运行方式。
Android总Activity的启动模式分为四种:
Activity启动模式设置:
<acti
- 攻城狮送女友的CSS3生日蛋糕
ini
htmlWebhtml5csscss3
在线预览:http://keleyi.com/keleyi/phtml/html5/29.htm
代码如下:
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>攻城狮送女友的CSS3生日蛋糕-柯乐义<
- 读源码学Servlet(1)GenericServlet 源码分析
jzinfo
tomcatWebservlet网络应用网络协议
Servlet API的核心就是javax.servlet.Servlet接口,所有的Servlet 类(抽象的或者自己写的)都必须实现这个接口。在Servlet接口中定义了5个方法,其中有3个方法是由Servlet 容器在Servlet的生命周期的不同阶段来调用的特定方法。
先看javax.servlet.servlet接口源码:
package
- JAVA进阶:VO(DTO)与PO(DAO)之间的转换
snoopy7713
javaVOHibernatepo
PO即 Persistence Object VO即 Value Object
VO和PO的主要区别在于: VO是独立的Java Object。 PO是由Hibernate纳入其实体容器(Entity Map)的对象,它代表了与数据库中某条记录对应的Hibernate实体,PO的变化在事务提交时将反应到实际数据库中。
实际上,这个VO被用作Data Transfer
- mongodb group by date 聚合查询日期 统计每天数据(信息量)
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
/* 1 */
{
"_id" : ObjectId("557ac1e2153c43c320393d9d"),
"msgType" : "text",
"sendTime" : ISODate("2015-06-12T11:26:26.000Z")
- java之18天 常用的类(一)
Luob.
MathDateSystemRuntimeRundom
System类
import java.util.Properties;
/**
* System:
* out:标准输出,默认是控制台
* in:标准输入,默认是键盘
*
* 描述系统的一些信息
* 获取系统的属性信息:Properties getProperties();
*
*
*
*/
public class Sy
- maven
wuai
maven
1、安装maven:解压缩、添加M2_HOME、添加环境变量path
2、创建maven_home文件夹,创建项目mvn_ch01,在其下面建立src、pom.xml,在src下面简历main、test、main下面建立java文件夹
3、编写类,在java文件夹下面依照类的包逐层创建文件夹,将此类放入最后一级文件夹
4、进入mvn_ch01
4.1、mvn compile ,执行后会在