- 深度学习论文: CAS-ViT: Convolutional Additive Self-attention Vision Transformers
mingo_敏
PaperReading深度学习人工智能
深度学习论文:CAS-ViT:ConvolutionalAdditiveSelf-attentionVisionTransformersforEfficientMobileApplicationsCAS-ViT:ConvolutionalAdditiveSelf-attentionVisionTransformersforEfficientMobileApplicationsPDF:https:/
- 深度学习论文: Image Segmentation Using Text and Image Prompts
mingo_敏
PaperReadingSemanticSegmentation深度学习人工智能
深度学习论文:ImageSegmentationUsingTextandImagePromptsImageSegmentationUsingTextandImagePromptsPDF:https://arxiv.org/abs/2503.10622v1PyTorch代码:https://github.com/shanglianlm0525/CvPytorchPyTorch代码:https://g
- SD模型微调之LoRA
好评笔记
补档深度学习计算机视觉人工智能面试AIGCSDstablediffusion
大家好,这里是Goodnote(好评笔记),关注公主号Goodnote,专栏文章私信限时Free。本文是SD模型微调方法LoRA的详细介绍,包括数据集准备,模型微调过程,推理过程,优缺点等。热门专栏机器学习机器学习笔记合集深度学习深度学习笔记合集文章目录热门专栏机器学习深度学习论文概念核心原理优点训练过程预训练模型加载选择微调的层LoRA优化的层Cross-Attention(跨注意力)层Self
- 深度学习论文阅读路线图
喜欢打酱油的老鸟
深度学习论文阅读路线图深度学习论文阅读路线图论文阅读路线图
https://www.toutiao.com/a6703859415763649031/作者:floodsun编译:ronghuaiyang这是作者一年前整理的东西,有些最新的论文没有包含进去,但是对于新手来说,入门足够了!如果你是深度学习领域的新人,你的第一个问题可能是“我该从哪些论文开始读起呢?”这就是深度学习论文的阅读路线图!这个路线图是根据下面几个规则构建的:从概要到细节从老的到最新的业
- 深度学习论文: Cultivated Land Extraction from High-Resolution Remote Sensing Image
mingo_敏
PaperReadingDeepLearningInstanceSegmentationpython人工智能机器学习
深度学习论文:CultivatedLandExtractionfromHigh-ResolutionRemoteSensingImageTheWinningSolutiontotheiFLYTEKChallenge2021CultivatedLandExtractionfromHigh-ResolutionRemoteSensingImagePDF:https://arxiv.org/pdf/22
- 深度学习论文精读(7):MTCNN
hwl19951007
计算机视觉论文精读
深度学习论文精读(7):MTCNN论文地址:JointFaceDetectionandAlignmentusingMulti-taskCascadedConvolutionalNetworks译文地址:https://zhuanlan.zhihu.com/p/37884254参考博文1:https://zhuanlan.zhihu.com/p/38520597官方地址:https://kpzhan
- 易 AI - 使用 TensorFlow 2 Keras 实现 AlexNet CNN 架构
CatchZeng
原文:https://makeoptim.com/deep-learning/yiai-alexnet-implementation前言网络结构实现SequentialSubclassingDemo小结参考前言上一篇笔者使用如何阅读深度学习论文的方法阅读了AlexNet。为了加深理解,本文带大家使用TensorFlow2Keras实现AlexNetCNN架构。网络结构image从上一篇可以得到Al
- 【初读论文】
Selvaggia
深度学习python
这里写目录标题万字长文解析深度学习中的术语面向小白的深度学习论文术语(持续更新)deepsolo不懂的知识pipelinebaselineRoI(RegionofInterest)分类问题中的正例负例指示函数(indicatorfunction)模型性能评估指标(PRF1……)深度学习中的FPN详解CNN解码Transformer:自注意力机制与编解码器机制详述与代码实现deepsolo前言知乎深
- 第4周:Pytorch——综合应用和实战项目 Day 28-30: 学习资源和社区参与
M.D
学习pytorchtensorflow
第4周:综合应用和实战项目Day28-30:学习资源和社区参与在这个阶段,我们将探索更多的学习资源并鼓励参与PyTorch和TensorFlow的社区,以进一步提升技术和融入开发者社群。学习资源:论文:阅读最新的机器学习和深度学习论文,了解领域的最新进展。推荐资源包括arXiv、GoogleScholar。博客和教程:关注行业知名博客和教程,如TowardsDataScience,Medium,P
- 深度学习论文解读分享之diffGrad:一种卷积神经网络优化方法
曦曦逆风
深度学习深度学习cnn人工智能
IEEETNNLS2020:diffGrad:一种卷积神经网络优化方法题目diffGrad:AnOptimizationMethodforConvolutionalNeuralNetworks作者ShivRamDubey,Member,IEEE,SoumenduChakraborty,SwalpaKumarRoy,StudentMember,IEEE,SnehasisMukherjee,Membe
- AI 论文精读,中文视频讲解:剖析人工智能本质 | 开源日报 No.120
开源服务指南
开源日报人工智能开源
mli/paper-readingStars:21.8kLicense:Apache-2.0深度学习论文精读是一个深度学习相关论文列表,包括计算机视觉、生成模型、自然语言处理等多个领域。该项目的核心优势和特点包括:提供了大量关于深度学习各领域热门文章内容对不同年份发表的有较高引用率或近期比较有意思的文章进行详尽解读涵盖了计算机视觉、生成模型、自然语言处理等多个方面,为广大研究者提供全面而专业的知识
- 深度学习论文阅读:Generative Pre-Training(GPT)
阿正的梦工坊
DLPapers深度学习GPTBERTtransformer
文章目录GPTAbstract1Introduction6Conclusion2RelatedWork3Framework3.1Unsupervisedpre-trainingGPT和BERT的区别3.2Supervisedfine-tuning3.3Task-specificinputtransformations4Experiments总结参考GPT核心点:预训练一个transformerde
- 推荐·人工智能+深度学习论文阅读小组
我的昵称违规了
Pytorch学习到第5篇论文,这篇论文解读很少,就在网上搜了一下,不经意发现这个小组,推荐给大家。似乎不让放外链?我试一下PaperWeeklyPaperWeekly论文阅读小组阅读论文是小众活动,阅读者分散在全球各地。PaperWeekly论文阅读小组,把分散在全球的华人阅读者,聚合在一起。不仅互帮互助读懂论文,而且通过讨论,激发灵感。进入PaperWeekly的网站,阅读者不仅可以看到本周热
- 经典深度学习论文中英文翻译
MrUncle德鲁
机器学习论文翻译深度学习中英文
DeepLearningPapersTranslation(CV)仅为方便查看。本文转自:SnailTyan的Github(侵删)ImageClassificationAlexNetImageNetClassificationwithDeepConvolutionalNeuralNetworks中文版中英文对照VGGVeryDeepConvolutionalNetworksforLarge-Sca
- 使用 PointNet 进行3D点集(即点云)的分类
TD程序员
深度学习开发实践系列分类数据挖掘人工智能机器学习神经网络3d
点云分类介绍无序3D点集(即点云)的分类、检测和分割是计算机视觉中的核心问题。此示例实现了开创性的点云深度学习论文PointNet(Qi等人,2017)。设置如果使用colab首先安装trimesh!pipinstalltrimesh。importosimportglobimporttrimeshimportnumpyasnpimporttensorflowastffromte
- [深度学习论文笔记]Hybrid Window Attention Based Transformer Architecture for Brain Tumor Segmentation
SerendipityQYK
深度学习之医学图像分割论文深度学习transformer医学图像处理肿瘤分割人工智能
HybridWindowAttentionBasedTransformerArchitectureforBrainTumorSegmentation基于混合窗口注意力的Transformer结构脑肿瘤分割Author:HimashiPeiris,MunawarHayat,ZhaolinChen,GaryEgan,MehrtashHarandiUnit:MonashUniversitySubmitt
- FlyAI小课堂:深度学习论文翻译解析(3):丰富的特征层次结构,可实现准确的目标检测和语义分割
iFlyAI
竞赛深度学习目标检测机器翻译目标检测语义分割深度学习
论文标题:Richfeaturehierarchiesforaccurateobjectdetectionandsemanticsegmentation标题翻译:丰富的特征层次结构,可实现准确的目标检测和语义分割论文作者:RossGirshickJeffDonahueTrevorDarrellJitendraMali论文地址:http://fcv2011.ulsan.ac.kr/files/ann
- 深度学习论文翻译 -- Inception-v4,Inception-ResNet and the Impact of Residual Connections on Learning
X_Imagine
深度学习论文翻译Inception-V4图像分类深度学习
本文翻译论文为深度学习经典模型之一:Inception-V4论文链接:https://arxiv.org/pdf/1602.07261.pdf摘要:近些年,超深度卷积网络成为图像识别领域的核心算法。其中,Inception结构在图像分类中表现优秀,并且计算代价很低。最近,残差与更加传统的结构相结合,在ILSVRC挑战中获得Start-of-art的结果(与Inception-v3)的分类精度差不多
- 机器学习/深度学习论文里的损失函数 L字体书写方式
Echo_ac
python
损失函数L\mathcal{L}L:\mathcal{L}损失函数l\mathcal{l}l:\mathcal{l}
- 深度学习论文: ISTDU-Net:Infrared Small-Target Detection U-Net及其PyTorch实现
mingo_敏
PaperReadingDeepLearningSemanticSegmentation深度学习pytorch人工智能
深度学习论文:ISTDU-Net:InfraredSmall-TargetDetectionU-Net及其PyTorch实现ISTDU-Net:InfraredSmall-TargetDetectionU-NetPDF:https://doi.org/10.1109/LGRS.2022.3141584PyTorch代码:https://github.com/shanglianlm0525/CvPy
- 深度学习论文: Rethinking Mobile Block for Efficient Attention-based Models及其PyTorch实现
mingo_敏
PaperReadingDeepLearning深度学习pytorch人工智能
深度学习论文:RethinkingMobileBlockforEfficientAttention-basedModels及其PyTorch实现RethinkingMobileBlockforEfficientAttention-basedModelsPDF:https://arxiv.org/pdf/2301.01146.pdfPyTorch代码:https://github.com/shang
- ICCV 2023 | Ada3D: 利用动态推理挖掘3D感知任务中数据冗余性
AITIME论道
3d
点击蓝字关注我们AITIME欢迎每一位AI爱好者的加入!以下内容来源于将门创投作者:赵天辰机构:清华大学电子工程系研究方向:硬件友好的高效深度学习论文标题:Ada3D:ExploitingtheSpatialRedundancywithAdaptiveInferenceforEfficient3DObjectDetection论文地址:https://arxiv.org/abs/2307.0820
- 深度学习论文分享(六)Simple Baselines for Image Restoration
澪mio
深度学习论文分享深度学习人工智能
深度学习论文分享(六)SimpleBaselinesforImageRestoration前言Abstract1Introduction2RelatedWorks2.1ImageRestoration2.2GatedLinearUnits3BuildASimpleBaseline3.1Architecture3.2APlainBlock3.3Normalization3.4Activation3.
- 深度学习论文分享(七)Denoising Diffusion Probabilistic Models for Robust Image Super-Resolution in the Wild
澪mio
深度学习论文分享深度学习人工智能
深度学习论文分享(七)DenoisingDiffusionProbabilisticModelsforRobustImageSuper-ResolutionintheWild前言Abstract1.Introduction2.BackgroundonDiffusionModels3.RelatedWork4.Methodology4.1.Architecture4.2.Higher-orderde
- 深度学习论文分享(八)Learning Event-Driven Video Deblurring and Interpolation
澪mio
深度学习论文分享深度学习人工智能
深度学习论文分享(八)LearningEvent-DrivenVideoDeblurringandInterpolation前言Abstract1Introduction2Motivation2.1PhysicalModelofEvent-basedVideoReconstruction2.2SpatiallyVariantTriggeringThreshold3ProposedMethods3.
- 深度学习论文: Segment Any Anomaly without Training via Hybrid Prompt Regularization
mingo_敏
UnsupervisedAnomalyDetectionPaperReadingDeepLearning深度学习prompt人工智能
深度学习论文:SegmentAnyAnomalywithoutTrainingviaHybridPromptRegularizationSegmentAnyAnomalywithoutTrainingviaHybridPromptRegularizationPDF:https://arxiv.org/pdf/2305.10724.pdfPyTorch代码:https://github.com/sh
- 年末回顾:2021年 AI 领域十大研究趋势及必读论文
夕小瑶
人工智能大数据算法编程语言python
编|小轶,Yimin_饭煲在本文中,我们将梳理近百篇的最新深度学习论文,以总结出“2021年十大AI研究趋势”。AI领域的论文可谓层出不穷。这篇文章或许能帮助你跟踪总体趋势和重要研究。下文中提及的部分工作可能并不发表于2021年,但对于形成2021年的AI趋势也起到了重要作用,因而也在本文中列出。1.OpenAICLIPOpenAI今年年初发布的CLIP模型可以说是今年AI行业最重要的里程碑。CL
- 深度学习论文: RepViT: Revisiting Mobile CNN From ViT Perspective及其PyTorch实现
mingo_敏
PaperReadingDeepLearning深度学习cnnpytorch
深度学习论文:RepViT:RevisitingMobileCNNFromViTPerspective及其PyTorch实现RepViT:RevisitingMobileCNNFromViTPerspectivePDF:https://arxiv.org/pdf/2307.09283.pdfPyTorch代码:https://github.com/shanglianlm0525/CvPytorch
- 深度学习论文: Towards Total Recall in Industrial Anomaly Detection及其PyTorch实现
mingo_敏
UnsupervisedAnomalyDetectionPaperReadingDeepLearning深度学习pytorch人工智能
深度学习论文:TowardsTotalRecallinIndustrialAnomalyDetection及其PyTorch实现TowardsTotalRecallinIndustrialAnomalyDetectionPDF:https://arxiv.org/pdf/2106.08265.pdfPyTorch代码:https://github.com/shanglianlm0525/CvPyt
- 万字长文解析深度学习中的术语
追忆苔上雪
深度学习人工智能pytorch机器学习神经网络
引言新手在学习深度学习或者在看深度学习论文的过程中,有不少专业词汇,软件翻译不出来,就算是翻译出来也看不懂,因为不少术语是借用其他学科的概念,这里整理了一些在深度学习中常见的术语,并对一些概念进行解释。这里先教大家一个查概念的方法,比如我想查Ablationstudy,这个中文翻译是消融实验,这概念谁能明白呢,咱们可以从根源去查消融实验的含义,打开google,直接搜whatisxxxindeep
- PHP,安卓,UI,java,linux视频教程合集
cocos2d-x小菜
javaUIlinuxPHPandroid
╔-----------------------------------╗┆
- zookeeper admin 笔记
braveCS
zookeeper
Required Software
1) JDK>=1.6
2)推荐使用ensemble的ZooKeeper(至少3台),并run on separate machines
3)在Yahoo!,zk配置在特定的RHEL boxes里,2个cpu,2G内存,80G硬盘
数据和日志目录
1)数据目录里的文件是zk节点的持久化备份,包括快照和事务日
- Spring配置多个连接池
easterfly
spring
项目中需要同时连接多个数据库的时候,如何才能在需要用到哪个数据库就连接哪个数据库呢?
Spring中有关于dataSource的配置:
<bean id="dataSource" class="com.mchange.v2.c3p0.ComboPooledDataSource"
&nb
- Mysql
171815164
mysql
例如,你想myuser使用mypassword从任何主机连接到mysql服务器的话。
GRANT ALL PRIVILEGES ON *.* TO 'myuser'@'%'IDENTIFIED BY 'mypassword' WI
TH GRANT OPTION;
如果你想允许用户myuser从ip为192.168.1.6的主机连接到mysql服务器,并使用mypassword作
- CommonDAO(公共/基础DAO)
g21121
DAO
好久没有更新博客了,最近一段时间工作比较忙,所以请见谅,无论你是爱看呢还是爱看呢还是爱看呢,总之或许对你有些帮助。
DAO(Data Access Object)是一个数据访问(顾名思义就是与数据库打交道)接口,DAO一般在业
- 直言有讳
永夜-极光
感悟随笔
1.转载地址:http://blog.csdn.net/jasonblog/article/details/10813313
精华:
“直言有讳”是阿里巴巴提倡的一种观念,而我在此之前并没有很深刻的认识。为什么呢?就好比是读书时候做阅读理解,我喜欢我自己的解读,并不喜欢老师给的意思。在这里也是。我自己坚持的原则是互相尊重,我觉得阿里巴巴很多价值观其实是基本的做人
- 安装CentOS 7 和Win 7后,Win7 引导丢失
随便小屋
centos
一般安装双系统的顺序是先装Win7,然后在安装CentOS,这样CentOS可以引导WIN 7启动。但安装CentOS7后,却找不到Win7 的引导,稍微修改一点东西即可。
一、首先具有root 的权限。
即进入Terminal后输入命令su,然后输入密码即可
二、利用vim编辑器打开/boot/grub2/grub.cfg文件进行修改
v
- Oracle备份与恢复案例
aijuans
oracle
Oracle备份与恢复案例
一. 理解什么是数据库恢复当我们使用一个数据库时,总希望数据库的内容是可靠的、正确的,但由于计算机系统的故障(硬件故障、软件故障、网络故障、进程故障和系统故障)影响数据库系统的操作,影响数据库中数据的正确性,甚至破坏数据库,使数据库中全部或部分数据丢失。因此当发生上述故障后,希望能重构这个完整的数据库,该处理称为数据库恢复。恢复过程大致可以分为复原(Restore)与
- JavaEE开源快速开发平台G4Studio v5.0发布
無為子
我非常高兴地宣布,今天我们最新的JavaEE开源快速开发平台G4Studio_V5.0版本已经正式发布。
访问G4Studio网站
http://www.g4it.org
2013-04-06 发布G4Studio_V5.0版本
功能新增
(1). 新增了调用Oracle存储过程返回游标,并将游标映射为Java List集合对象的标
- Oracle显示根据高考分数模拟录取
百合不是茶
PL/SQL编程oracle例子模拟高考录取学习交流
题目要求:
1,创建student表和result表
2,pl/sql对学生的成绩数据进行处理
3,处理的逻辑是根据每门专业课的最低分线和总分的最低分数线自动的将录取和落选
1,创建student表,和result表
学生信息表;
create table student(
student_id number primary key,--学生id
- 优秀的领导与差劲的领导
bijian1013
领导管理团队
责任
优秀的领导:优秀的领导总是对他所负责的项目担负起责任。如果项目不幸失败了,那么他知道该受责备的人是他自己,并且敢于承认错误。
差劲的领导:差劲的领导觉得这不是他的问题,因此他会想方设法证明是他的团队不行,或是将责任归咎于团队中他不喜欢的那几个成员身上。
努力工作
优秀的领导:团队领导应该是团队成员的榜样。至少,他应该与团队中的其他成员一样努力工作。这仅仅因为他
- js函数在浏览器下的兼容
Bill_chen
jquery浏览器IEDWRext
做前端开发的工程师,少不了要用FF进行测试,纯js函数在不同浏览器下,名称也可能不同。对于IE6和FF,取得下一结点的函数就不尽相同:
IE6:node.nextSibling,对于FF是不能识别的;
FF:node.nextElementSibling,对于IE是不能识别的;
兼容解决方式:var Div = node.nextSibl
- 【JVM四】老年代垃圾回收:吞吐量垃圾收集器(Throughput GC)
bit1129
垃圾回收
吞吐量与用户线程暂停时间
衡量垃圾回收算法优劣的指标有两个:
吞吐量越高,则算法越好
暂停时间越短,则算法越好
首先说明吞吐量和暂停时间的含义。
垃圾回收时,JVM会启动几个特定的GC线程来完成垃圾回收的任务,这些GC线程与应用的用户线程产生竞争关系,共同竞争处理器资源以及CPU的执行时间。GC线程不会对用户带来的任何价值,因此,好的GC应该占
- J2EE监听器和过滤器基础
白糖_
J2EE
Servlet程序由Servlet,Filter和Listener组成,其中监听器用来监听Servlet容器上下文。
监听器通常分三类:基于Servlet上下文的ServletContex监听,基于会话的HttpSession监听和基于请求的ServletRequest监听。
ServletContex监听器
ServletContex又叫application
- 博弈AngularJS讲义(16) - 提供者
boyitech
jsAngularJSapiAngularProvider
Angular框架提供了强大的依赖注入机制,这一切都是有注入器(injector)完成. 注入器会自动实例化服务组件和符合Angular API规则的特殊对象,例如控制器,指令,过滤器动画等。
那注入器怎么知道如何去创建这些特殊的对象呢? Angular提供了5种方式让注入器创建对象,其中最基础的方式就是提供者(provider), 其余四种方式(Value, Fac
- java-写一函数f(a,b),它带有两个字符串参数并返回一串字符,该字符串只包含在两个串中都有的并按照在a中的顺序。
bylijinnan
java
public class CommonSubSequence {
/**
* 题目:写一函数f(a,b),它带有两个字符串参数并返回一串字符,该字符串只包含在两个串中都有的并按照在a中的顺序。
* 写一个版本算法复杂度O(N^2)和一个O(N) 。
*
* O(N^2):对于a中的每个字符,遍历b中的每个字符,如果相同,则拷贝到新字符串中。
* O(
- sqlserver 2000 无法验证产品密钥
Chen.H
sqlwindowsSQL ServerMicrosoft
在 Service Pack 4 (SP 4), 是运行 Microsoft Windows Server 2003、 Microsoft Windows Storage Server 2003 或 Microsoft Windows 2000 服务器上您尝试安装 Microsoft SQL Server 2000 通过卷许可协议 (VLA) 媒体。 这样做, 收到以下错误信息CD KEY的 SQ
- [新概念武器]气象战争
comsci
气象战争的发动者必须是拥有发射深空航天器能力的国家或者组织....
原因如下:
地球上的气候变化和大气层中的云层涡旋场有密切的关系,而维持一个在大气层某个层次
- oracle 中 rollup、cube、grouping 使用详解
daizj
oraclegroupingrollupcube
oracle 中 rollup、cube、grouping 使用详解 -- 使用oracle 样例表演示 转自namesliu
-- 使用oracle 的样列库,演示 rollup, cube, grouping 的用法与使用场景
--- ROLLUP , 为了理解分组的成员数量,我增加了 分组的计数 COUNT(SAL)
- 技术资料汇总分享
Dead_knight
技术资料汇总 分享
本人汇总的技术资料,分享出来,希望对大家有用。
http://pan.baidu.com/s/1jGr56uE
资料主要包含:
Workflow->工作流相关理论、框架(OSWorkflow、JBPM、Activiti、fireflow...)
Security->java安全相关资料(SSL、SSO、SpringSecurity、Shiro、JAAS...)
Ser
- 初一下学期难记忆单词背诵第一课
dcj3sjt126com
englishword
could 能够
minute 分钟
Tuesday 星期二
February 二月
eighteenth 第十八
listen 听
careful 小心的,仔细的
short 短的
heavy 重的
empty 空的
certainly 当然
carry 携带;搬运
tape 磁带
basket 蓝子
bottle 瓶
juice 汁,果汁
head 头;头部
- 截取视图的图片, 然后分享出去
dcj3sjt126com
OSObjective-C
OS 7 has a new method that allows you to draw a view hierarchy into the current graphics context. This can be used to get an UIImage very fast.
I implemented a category method on UIView to get the vi
- MySql重置密码
fanxiaolong
MySql重置密码
方法一:
在my.ini的[mysqld]字段加入:
skip-grant-tables
重启mysql服务,这时的mysql不需要密码即可登录数据库
然后进入mysql
mysql>use mysql;
mysql>更新 user set password=password('新密码') WHERE User='root';
mysq
- Ehcache(03)——Ehcache中储存缓存的方式
234390216
ehcacheMemoryStoreDiskStore存储驱除策略
Ehcache中储存缓存的方式
目录
1 堆内存(MemoryStore)
1.1 指定可用内存
1.2 驱除策略
1.3 元素过期
2 &nbs
- spring mvc中的@propertysource
jackyrong
spring mvc
在spring mvc中,在配置文件中的东西,可以在java代码中通过注解进行读取了:
@PropertySource 在spring 3.1中开始引入
比如有配置文件
config.properties
mongodb.url=1.2.3.4
mongodb.db=hello
则代码中
@PropertySource(&
- 重学单例模式
lanqiu17
单例Singleton模式
最近在重新学习设计模式,感觉对模式理解更加深刻。觉得有必要记下来。
第一个学的就是单例模式,单例模式估计是最好理解的模式了。它的作用就是防止外部创建实例,保证只有一个实例。
单例模式的常用实现方式有两种,就人们熟知的饱汉式与饥汉式,具体就不多说了。这里说下其他的实现方式
静态内部类方式:
package test.pattern.singleton.statics;
publ
- .NET开源核心运行时,且行且珍惜
netcome
java.net开源
背景
2014年11月12日,ASP.NET之父、微软云计算与企业级产品工程部执行副总裁Scott Guthrie,在Connect全球开发者在线会议上宣布,微软将开源全部.NET核心运行时,并将.NET 扩展为可在 Linux 和 Mac OS 平台上运行。.NET核心运行时将基于MIT开源许可协议发布,其中将包括执行.NET代码所需的一切项目——CLR、JIT编译器、垃圾收集器(GC)和核心
- 使用oscahe缓存技术减少与数据库的频繁交互
Everyday都不同
Web高并发oscahe缓存
此前一直不知道缓存的具体实现,只知道是把数据存储在内存中,以便下次直接从内存中读取。对于缓存的使用也没有概念,觉得缓存技术是一个比较”神秘陌生“的领域。但最近要用到缓存技术,发现还是很有必要一探究竟的。
缓存技术使用背景:一般来说,对于web项目,如果我们要什么数据直接jdbc查库好了,但是在遇到高并发的情形下,不可能每一次都是去查数据库,因为这样在高并发的情形下显得不太合理——
- Spring+Mybatis 手动控制事务
toknowme
mybatis
@Override
public boolean testDelete(String jobCode) throws Exception {
boolean flag = false;
&nbs
- 菜鸟级的android程序员面试时候需要掌握的知识点
xp9802
android
熟悉Android开发架构和API调用
掌握APP适应不同型号手机屏幕开发技巧
熟悉Android下的数据存储
熟练Android Debug Bridge Tool
熟练Eclipse/ADT及相关工具
熟悉Android框架原理及Activity生命周期
熟练进行Android UI布局
熟练使用SQLite数据库;
熟悉Android下网络通信机制,S