caffe中DATA层crop_size解释

layer {
  name: "data"
  type: "Data"
  top: "data"
  top: "label"
  include {
    phase: TRAIN
  }
  transform_param {
    mirror: true
    crop_size: 600
    mean_file: "examples/images/imagenet_mean.binaryproto"
  }
  data_param {
    source: "examples/images/train_lmdb"
    batch_size: 256
    backend: LMDB
  }
}
layer {
  name: "data"
  type: "Data"
  top: "data"
  top: "label"
  include {
    phase: TEST
  }
  transform_param {
    mirror: false
    crop_size: 600
    mean_file: "examples/images/imagenet_mean.binaryproto"
  }
  data_param {
    source: "examples/images/val_lmdb"
    batch_size: 50
    backend: LMDB
  }
}

从上面的 数据层的定义,看得出用了镜像和crop_size,还定义了 mean_file。
利用crop_size这种方式可以剪裁中心关注点和边角特征,mirror可以产生镜像,弥补小数据集的不足。
这里要重点讲一下crop_size在训练层与测试层的区别:
首先我们需要了解mean_file和crop_size没什么大关系。mean_file是根据训练集图片制作出来的,crop_size是对训练集图像进行裁剪,两个都是对原始的训练集图像进行处理。如果原始训练图像的尺寸大小为800*800,crop_size的图片为600*600,则mean_file与crop_size的图片均为800*800的图像集。
在caffe中,如果定义了crop_size,那么在train时会对大于crop_size的图片进行随机裁剪,而在test时只是截取中间部分(详见/caffe/src/caffe/data_transformer.cpp):

//We only do random crop when we do training.
    if (phase_ == TRAIN) {
      h_off = Rand(datum_height - crop_size + 1);
      w_off = Rand(datum_width - crop_size + 1);
    } else {
      h_off = (datum_height - crop_size) / 2;
      w_off = (datum_width - crop_size) / 2;
    }
  }

从上述的代码可以看出,如果我们输入的图片尺寸大于crop_size,那么图片会被裁剪。当 phase 模式为 TRAIN 时,裁剪是随机进行裁剪,而当为TEST 模式时,其裁剪方式则只是裁剪图像的中间区域。

你可能感兴趣的:(CAFFE)