https://blog.csdn.net/cymy001/article/details/78418432
有待补充
Python 中,数据可视化一般是通过较底层的 Matplotlib 库和较高层的 Seaborn库实现的,本文主要介绍一些常用的图的绘制方法。
9是多分类面板,能够绘制多个图,并且可通过kind参数绘制出更多的图。
import seaborn as sns
import pandas as pd
import numpy as np
from scipy import stats,integrate
import matplotlib.pyplot as plt
sns.set(color_codes = True)
np.random.seed(sum(map(ord,"distributions")))
x = np.random.normal(size=100)
sns.distplot(x,kde=False)
sns.distplot(x,bins=20,kde=False) # 切分为20小块
x = np.random.gamma(6,size=200)
sns.distplot(x,kde=False,fit=stats.gamma)
mean,cov = [0,1],[(1,0.5),(0.5,1)]
data = np.random.multivariate_normal(mean,cov,200) # 生成指定的均值和协方差
df = pd.DataFrame(data,columns=["x","y"])
sns.jointplot(x="x",y = 'y',data = df)
x,y = np.random.multivariate_normal(mean,cov,1000).T
with sns.axes_style('white'):
sns.jointplot(x=x,y = y,kind='hex',color='k')
np.random.seed(sum(map(ord,"regression")))
tips = sns.load_dataset("tips")
tips.head()
sns.regplot(x="total_bill",y="tip",data=tips)
sns.lmplot(x="total_bill",y="tip",data=tips)
sns.regplot(x="size",y="tip",data=tips)
sns.regplot(x="size",y="tip",data=tips,x_jitter=0.05)
sns.regplot(x="size",y="tip",data=tips,x_jitter=0.5)
titanic = sns.load_dataset("titanic")
iris = sns.load_dataset("iris")
sns.stripplot(x='day',y="total_bill",data=tips)
sns.stripplot(x='day',y="total_bill",data=tips,jitter=True)
sns.swarmplot(x='day',y="total_bill",data=tips)
sns.swarmplot(x='day',y="total_bill",hue='sex',data=tips)
sns.swarmplot(y='day',x="total_bill",hue='time',data=tips)
sns.boxplot(x='day',y='total_bill',hue="time",data=tips)
sns.boxplot(y='size',x='total_bill',data=tips,orient="h")
sns.violinplot(x='day',y='total_bill',hue="time",data=tips)
sns.violinplot(x='day',y='total_bill',hue="sex",data=tips,split=True)
sns.violinplot(x='day',y='total_bill',data=tips,inner=None)
sns.swarmplot(x='day',y="total_bill",data=tips,color='w',alpha=0.5)
通过柱状图观察一等、二等、三等舱的分布
sns.barplot(x='sex',y='survived',hue='class',data=titanic)
sns.pointplot(x='sex',y='survived',hue='class',data=titanic)
sns.pointplot(x='class',y='survived',hue='sex',data=titanic,
palette={"male":"g","female":"m"},
maker=["s","o"],linestyles=["-","--"])