- 大数据量查询计算引发数据库CPU告警问题复盘
懒虫虫~
业务解决方案大表治理
大数据量查询计算引发数据库CPU告警问题复盘一、背景二、根因分析三、解决方案方案1:多线程+缓存方案2:利用中间表+缓存四、总结一、背景2025年7月份某天,CDP系统每天不定时推送我们的Portal服务,生产环境运营看板会展示统计数据,发现接口响应缓慢,随之而来数据库监控告警,发现数据库CPU达到了80%。由于表数据量大,计算统计复杂,多线程使用不当,导致数据库服务器爆表。其中A表数据量达到1亿
- Elasticsearch-索引原理
ouyang+
最近在参与一个基于Elasticsearch作为底层数据框架提供大数据量(亿级)的实时统计查询的方案设计工作,花了些时间学习Elasticsearch的基础理论知识,整理了一下,希望能对Elasticsearch感兴趣/想了解的同学有所帮助。同时也希望有发现内容不正确或者有疑问的地方,望指明,一起探讨,学习,进步。介绍Elasticsearch是一个分布式可扩展的实时搜索和分析引擎,一个建立在全文
- MySQL数据库优化之SQL优化终极指南
AAEllisonPang
Mysql数仓大数据数据库mysqlsql
目录SQL性能分析基础1.1慢查询日志配置1.2EXPLAIN执行计划解读1.3实时性能诊断工具索引优化实战2.1最左前缀原则的陷阱2.2联合索引设计案例2.3索引失效的7种场景高效查询编写技巧3.1避免全表扫描的秘诀3.2Join优化黄金法则3.3分页查询深度优化高级优化策略4.1隐式类型转换灾难4.2子查询重构方案4.3大数据量更新技巧企业级监控方案5.1慢SQL自动化分析5.2SQL审核平台
- 新能源电池厂自动化应用:Modbus TCP转DeviceNet实践
JIANGHONGZN
工业通讯协议网关ModbusTCPDeviceNETmodbus
一、项目背景在新能源电池厂的生产过程中,提升自动化水平对提高生产效率和产品质量至关重要。我们的生产线上,施耐德PLC负责整体的生产流程控制,采用ModbusTCP协议进行数据传输,它基于以太网,传输速度快、稳定性高,适合长距离和大数据量的通信,常用于监控与数据采集。而机械手臂作为关键的生产执行设备,使用DeviceNet协议,该协议基于CAN总线技术,具有出色的实时性和抗干扰能力,能满足机械手臂对
- Spring WebFlux 详解:从入门到实战
贾修行
JAVAspringjava后端
在当今高并发、大数据量的业务场景下,传统的同步阻塞式Web框架逐渐暴露出性能瓶颈。SpringFramework5.0引入的SpringWebFlux为开发者提供了一种全新的异步非阻塞编程模型,能够更好地应对现代应用的性能挑战。本文将从基础概念到实战应用,由浅入深地解析SpringWebFlux,帮助开发者全面掌握这一高性能框架。一、SpringWebFlux基础认知1.1什么是SpringWeb
- Java学习第六十六部分——分布式系统架构
慕y274
java学习架构
目录一、前言提要二、核心目标三、核心组件与技术1.服务拆分与通信2.服务注册与发现3.配置中心4.负载均衡5.熔断、降级与限流6.API网关7.分布式数据管理8.分布式追踪与监控9.容器化与编排四、典型Java分布式技术栈组合五、关键挑战与解决方案六、设计原则七、总结归纳一、前言提要Java分布式系统架构是一种利用多台计算机(节点)协同工作,共同完成单个计算机难以胜任的大型任务(高并发、大数据量、
- MySQL导入数据量大速度慢问题解决
DN金猿
mysqloracle及其他数据库mysql数据库
目录1.导出数据方式选择2.尝试修改参数加快导入速度2.1方式一:修改参数2.2方式二:禁用索引和约束2.3拆分大型SQL文件2.4使用并行导入1.导出数据方式选择首先给个建议,导出导入数据尽量使用MySQL自带的命令行工具,不要使用Navicat、workbench等图形化工具。特别是大数据量的时候,用MySQL自带的命令行工具导出和导入比用Navicat等图形化工具要快数倍,而且用Navica
- 从理论到实践:缓存策略与负载均衡如何优化电商API接口性能
Joe13265449558
API京东返回值接口淘宝天猫
电商API接口性能优化:缓存策略与负载均衡实践在电商领域,API接口作为连接前端应用与后端服务的关键纽带,其性能直接影响到用户体验、系统稳定性及业务运营效率。随着电商业务的快速发展,高并发访问和大数据量处理成为常态,对API接口性能提出了更高要求。本文将深入探讨电商API接口性能优化的两大核心策略——缓存策略与负载均衡实践,为电商企业提供切实可行的优化方案。一、缓存策略:提升API响应速度的关键1
- Python处理MySQL大数据量:分页查询与性能优化
AI天才研究院
AI人工智能与大数据pythonmysql性能优化ai
Python处理MySQL大数据量:分页查询与性能优化关键词:Python分页查询、MySQL性能优化、大数据量处理、LIMITOFFSET、索引优化摘要:当数据库表数据量达到百万级时,传统的LIMITOFFSET分页查询会出现明显性能瓶颈。本文从实际场景出发,用“图书馆找书”的通俗比喻拆解分页原理,结合Python代码示例和MySQL执行计划分析,详细讲解传统分页的痛点、优化思路(索引分页/覆盖
- MySQL 大数据量分页查询优化实战:从 90秒到 965毫秒的性能飞跃
要阿尔卑斯吗.
mysql数据库分布式架构java
在日常开发中,我们经常需要对数据库中的数据进行分页展示。特别是当表数据量达到几十万甚至上百万级时,传统的LIMIT分页方式会面临严重的性能瓶颈。今天,我将分享一个真实的性能优化案例,通过模拟大页码查询的现场,从90秒缩短到965毫秒,显著提升了查询效率。本篇文章将从问题出现的原因、索引原理、优化思路和最终实战效果等方面,为你全面讲解如何高效处理MySQL大数据分页查询问题。一、问题背景:大页码分页
- 从AWS MySQL数据库下载备份到S3的完整解决方案
AWS官方合作商
数据库awsmysql
本文将介绍两种主流方法将AWSRDSMySQL数据库备份下载到S3,适用于生产环境需求。方法一:通过RDS快照导出(AWS原生方案)适用场景:全量备份、大数据量、无需额外计算资源流程:创建数据库快照进入AWSRDS控制台→选择目标MySQL实例→点击"操作"→"拍摄快照"输入快照名称(如my-db-snapshot-2024)配置S3导出任务在RDS控制台左侧菜单选择快照→选择刚创建的快照点击"操
- 【C语言经典面试题】memcpy函数有没有更高效的拷贝实现方法?
架构师李肯
嵌入式物联网开发进阶c语言面试性能优化
【C语言经典面试题】memcpy函数有没有更高效的拷贝实现方法?我相信大部分初中级C程序员在面试的过程中,可能都被问过关于memcpy函数的问题,甚至需要手撕memcpy。本文从另一个角度带你领悟一下memcpy的面试题,你可以看看是否能接得住?文章目录1写在前面2源码实现2.1函数申明2.2简单的功能实现2.3满足大数据量拷贝的功能实现3源码测试4小小总结5更多分享1写在前面假如你遇到下面的面试
- 如何通过YashanDB提升客户体验
数据库
如何优化查询速度?这是许多企业在使用数据库技术时常常会遇到的问题。查询速度的快慢直接影响到用户的体验,尤其是在大数据量和高并发的使用场景中。顾客期望迅速获取信息,若响应时间过长,可能导致客户流失。因此,优化数据库的性能成为提升客户体验的关键举措之一。YashanDB作为一种高性能的数据库技术架构,提供了多种优化机制,以提升系统的查询速度和整体处理能力。多种部署架构YashanDB支持多种部署架构,
- Elasticsearch 高可用实战:架构设计与场景化解决方案
辣呼呼的哈哈
Elasticsearch入门到精通elasticsearchwpf大数据全文检索搜索引擎restfuljava
Elasticsearch高可用实战:架构设计与场景化解决方案本文深入探讨Elasticsearch在高并发、大数据量场景下的高可用架构设计,结合电商搜索、日志分析等真实案例,提供可落地的技术方案与Java实现。一、高可用架构设计原则1.分布式架构核心要素客户端负载均衡层协调节点数据节点-分片1数据节点-分片2数据节点-分片3副本分片副本分片副本分片2.高可用黄金法则冗余设计:至少3节点集群+1副
- oracle 数据库迁移expdp,impdp(数据泵导出导入)方法
小张是铁粉
oracle数据库
一.优缺点优点:1.高效性能:expdp,impdp使用并行技术,可以显著提高导出导入速度,尤其适用于大数据量的迁移。支持压缩和加密,减少导出文件的大小并提高安全性。2.灵活的对象选择:可以导出整个数据库、特定表空间、用户(Schema)或单个表。支持过滤条件,例如只导出特定表的数据或元数据。3.跨平台兼容性:支持跨平台迁移(例如从Linux到Windows),但需要注意字节序(endiannes
- Spring Boot 项目启动时按需初始化加载数据
我叫晨曦啊
springbootspringbootjava后端
1、新建类,类上添加注解@Component,该类用于在项目启动时处理数据加载任务;2、该类实现ApplicationRunner接口,并重写run方法;3、在重写的run方法里处理数据加载任务;注意:有定时加载数据需求的话,添加定时任务即可;一次性加载大数据量时可能内存溢出;同一个项目中,可以定义多个ApplicationRunner的实现类;存在多个ApplicationRunner的实现类时
- SQL Server 临时表、表变量与WITH语句的用法与区别
Favor_Yang
SQL调优及高级SQL语法编写数据库sqlsqlserver
引言在SQLServer数据处理中,临时表、表变量和WITH语句(CTE)是关键的中间结果集管理工具。临时表适合大数据量操作,表变量优化小数据量场景,而CTE则简化复杂查询逻辑。三者选择需综合考量数据量级、事务需求及代码可读性。本文将深入解析其工作机制,通过实测对比指导场景化选型。1.临时表(TemporaryTables)定义与创建通过#(本地)或##(全局)前缀创建物理表:--本地临时表CRE
- 【前端开发】Uniapp分页器:新增输入框跳转功能
基于UniApp官方扩展组件库uni-ui中的uni-pagination分页器组件,针对大数据量场景进行优化主要优化以下内容:新增输入框跳转功能:在原有分页器基础上,新增了一个输入框区域,允许用户直接输入目标页码进行跳转双向页码绑定优化:实现了输入框与当前页码的双向绑定机制。当用户通过其他方式(如点击上一页、下一页、页码按钮)切换页面时,输入框会自动更新显示当前页码。同时,当用户在输入框中输入页
- 电商API性能优化:策略体系与实施要点
Joe13265449558
性能优化电商返回值淘宝API接口京东
电商API性能优化策略介绍在电商领域,API(应用程序编程接口)作为连接电商平台与外部系统、服务或应用的关键桥梁,其性能直接关系到用户体验、业务效率以及系统的整体稳定性。随着电商业务的快速发展,API接口面临着高并发、大数据量处理等挑战,因此,对电商API进行性能优化显得尤为重要。本文将从多个维度探讨电商API性能优化的策略。一、数据库优化策略数据库是电商API接口的核心组件之一,其性能直接影响A
- React金融数据分析应用性能优化实战:借助AI辅助解决18万数据量栈溢出Bug
马特说
REACTreact.js金融数据分析
React金融数据分析应用性能优化实战:借助AI辅助解决18万数据量栈溢出Bug前言在现代前端开发中,处理大数据量的实时金融应用已成为常态。最近我在开发一个React-based金融数据分析应用时,遇到了典型的"Maximumcallstacksizeexceeded"错误。通过AI辅助分析和系统性优化,最终成功解决了这个复杂的性能问题。这篇文章将分享从问题发现到最终解决的完整过程。项目背景这是一
- Excel 的导入导出常用的技术栈
在JavaWeb项目中,Excel的导入导出是常见需求,技术栈丰富。以下是主流方案、优缺点及适用场景总结。一、主流技术栈对比表技术栈是否推荐支持格式特点/优势使用难度ApachePOI✅常用.xls、.xlsx功能全、稳定、低层操作,适合定制化中EasyExcel(阿里)✅强烈推荐.xlsx内存占用小,性能优越,适合大数据量导入导出简单JXL(已废弃)❌不推荐.xls太老旧,不支持.xlsx,功能
- 大数据量下高并发同步的解决方案
大师兄啊
sql大数据量下高并发同步的解决方案
大数据量下高并发同步的讲解(不看,保证你后悔)对于我们开发的网站,如果网站的访问量非常大的话,那么我们就需要考虑相关的并发访问问题了。而并发问题是绝大部分的程序员头疼的问题,但话又说回来了,既然逃避不掉,那我们就坦然面对吧~今天就让我们一起来研究一下常见的并发和同步吧。为了更好的理解并发和同步,我们需要先明白两个重要的概念:同步和异步1、同步和异步的区别和联系所谓同步,可以理解为在执行完一个函数或
- vue大数据量列表渲染性能优化:虚拟滚动原理
Java小卷
Vue3开源组件实战vue3自定义Tree虚拟滚动
前面咱完成了自定义JuanTree组件各种功能的实现。在数据量很大的情况下,我们讲了两种实现方式来提高渲染性能:前端分页和节点数据懒加载。前端分页小节:Vue3扁平化Tree组件的前端分页实现节点数据懒加载小节:ElementTreePlus版功能演示:数据懒加载关于扁平化结构Tree和嵌套结构Tree组件的渲染嵌套结构的Tree组件是一种递归渲染,性能上比起列表结构的v-for渲染比较一般。对于
- 缓存与加速技术实践-MongoDB数据库应用
曼汐 .
数据库缓存mongodb
一.什么是MongoDBMongoDB是一个文档型数据库,数据以类似JSON的文档形式存储。MongoDB的设计理念是为了应对大数据量、高性能和灵活性需求。MongoDB使用集合(Collections)来组织文档(Documents),每个文档都是由键值对组成的。数据库(Database):存储数据的容器,类似于关系型数据库中的数据库。集合(Collection):数据库中的一个集合,类似于关系
- MySQL派生表查询大数据量无结果问题分析与解决
GreatSQL社区
mysql数据库
MySQL派生表查询大数据量无结果问题分析与解决一、问题发现在客户现场的一次问题报告中发现某个带有派生表进行查询的时候,数据量少的时候有结果,但是数据量大的时候返回无记录。看下面例子:1、准备表CREATETABLE`cmdb_item`(`cm_item_id`varchar(350)NOTNULL,`cm_model_id`varchar(350)NOTNULL,PRIMARYKEY(`cm_
- 《Vue3+ECharts 大屏性能优化全攻略:从加载到交互的极致体验》
前端极客探险家
vue数据可视化性能优化大屏端echarts
1.大屏项目痛点分析与优化目标典型性能问题:首屏白屏时间过长大数据量下的渲染卡顿复杂动画导致的掉帧优化目标设定:首屏加载{config.splitChunks({chunks:'all',minSize:20000,maxSize:250000,minChunks:1,automaticNameDelimiter:'~',cacheGroups:{echarts:{test:/[\\/]node_
- 深入解析雪花算法:分布式ID生成的利器
需要重新演唱
算法分布式
深入解析雪花算法:分布式ID生成的利器在现代分布式系统中,如何生成全局唯一的ID是一个常见且重要的问题。特别是在微服务架构和大数据量场景下,传统的自增ID或UUID已经无法满足需求。Twitter开源的雪花算法(SnowFlake)应运而生,成为许多互联网公司推荐的解决方案。本文将深入探讨雪花算法的原理、实现细节以及优缺点,帮助程序员快速理解和应用这一高效工具。1.背景与需求1.1分布式系统中的I
- YashanDB数据库核心技术架构及未来发展趋势探讨
数据库
当前数据库技术面临着性能瓶颈、数据一致性保障和高可用性设计等一系列通用挑战。大数据量环境下,传统数据库系统在扩展性和事务管理方面表现出一定的局限性。YashanDB作为一款面向高性能和高可靠性需求的新一代数据库系统,设计了丰富的核心架构和创新机制,满足多样化应用场景需求。本文致力于为数据库研发人员、架构师及高级开发工程师提供YashanDB的核心技术架构详解,促进对数据库技术的深入理解与应用能力提
- YashanDB对API访问的支持如何影响开发效率?
数据库
引言在现代应用程序设计中,数据库的访问方式直接影响到开发效率和应用性能。尤其在高并发、大数据量的业务场景中,如何有效地进行数据库操作,成为了开发者需要面对的重要问题。YashanDB作为新一代数据库,提供了多种API访问支持,有助于提升开发效率。本文将分析YashanDB的API访问方式以及其对开发效率的影响。YashanDB的多样化API支持客户端驱动与语言接口YashanDB支持多种主流编程语
- 从幕后揭秘:HashMap 与 ConcurrentHashMap 的全面演进与 JDK8 优化
专业WP网站开发-Joyous
Java学习java
摘要本文将系统回顾Java标准库中两大哈希表实现——HashMap与ConcurrentHashMap——从JDK1.2到JDK17的演化历程,结合Java内存模型原理,深入剖析其在不同版本下的底层设计以及算法优化;并通过汇编级别分析、性能对比、生产案例和生态对比,全面呈现哈希表在高并发、大数据量场景中的实践与调优;最后展望容器在Valhalla、ProjectLoom等未来特性中的前景。完整大纲
- html页面js获取参数值
0624chenhong
html
1.js获取参数值js
function GetQueryString(name)
{
var reg = new RegExp("(^|&)"+ name +"=([^&]*)(&|$)");
var r = windo
- MongoDB 在多线程高并发下的问题
BigCat2013
mongodbDB高并发重复数据
最近项目用到 MongoDB , 主要是一些读取数据及改状态位的操作. 因为是结合了最近流行的 Storm进行大数据的分析处理,并将分析结果插入Vertica数据库,所以在多线程高并发的情境下, 会发现 Vertica 数据库中有部分重复的数据. 这到底是什么原因导致的呢?笔者开始也是一筹莫 展,重复去看 MongoDB 的 API , 终于有了新发现 :
com.mongodb.DB 这个类有
- c++ 用类模版实现链表(c++语言程序设计第四版示例代码)
CrazyMizzz
数据结构C++
#include<iostream>
#include<cassert>
using namespace std;
template<class T>
class Node
{
private:
Node<T> * next;
public:
T data;
- 最近情况
麦田的设计者
感慨考试生活
在五月黄梅天的岁月里,一年两次的软考又要开始了。到目前为止,我已经考了多达三次的软考,最后的结果就是通过了初级考试(程序员)。人啊,就是不满足,考了初级就希望考中级,于是,这学期我就报考了中级,明天就要考试。感觉机会不大,期待奇迹发生吧。这个学期忙于练车,写项目,反正最后是一团糟。后天还要考试科目二。这个星期真的是很艰难的一周,希望能快点度过。
- linux系统中用pkill踢出在线登录用户
被触发
linux
由于linux服务器允许多用户登录,公司很多人知道密码,工作造成一定的障碍所以需要有时踢出指定的用户
1/#who 查出当前有那些终端登录(用 w 命令更详细)
# who
root pts/0 2010-10-28 09:36 (192
- 仿QQ聊天第二版
肆无忌惮_
qq
在第一版之上的改进内容:
第一版链接:
http://479001499.iteye.com/admin/blogs/2100893
用map存起来号码对应的聊天窗口对象,解决私聊的时候所有消息发到一个窗口的问题.
增加ViewInfo类,这个是信息预览的窗口,如果是自己的信息,则可以进行编辑.
信息修改后上传至服务器再告诉所有用户,自己的窗口
- java读取配置文件
知了ing
1,java读取.properties配置文件
InputStream in;
try {
in = test.class.getClassLoader().getResourceAsStream("config/ipnetOracle.properties");//配置文件的路径
Properties p = new Properties()
- __attribute__ 你知多少?
矮蛋蛋
C++gcc
原文地址:
http://www.cnblogs.com/astwish/p/3460618.html
GNU C 的一大特色就是__attribute__ 机制。__attribute__ 可以设置函数属性(Function Attribute )、变量属性(Variable Attribute )和类型属性(Type Attribute )。
__attribute__ 书写特征是:
- jsoup使用笔记
alleni123
java爬虫JSoup
<dependency>
<groupId>org.jsoup</groupId>
<artifactId>jsoup</artifactId>
<version>1.7.3</version>
</dependency>
2014/08/28
今天遇到这种形式,
- JAVA中的集合 Collectio 和Map的简单使用及方法
百合不是茶
listmapset
List ,set ,map的使用方法和区别
java容器类类库的用途是保存对象,并将其分为两个概念:
Collection集合:一个独立的序列,这些序列都服从一条或多条规则;List必须按顺序保存元素 ,set不能重复元素;Queue按照排队规则来确定对象产生的顺序(通常与他们被插入的
- 杀LINUX的JOB进程
bijian1013
linuxunix
今天发现数据库一个JOB一直在执行,都执行了好几个小时还在执行,所以想办法给删除掉
系统环境:
ORACLE 10G
Linux操作系统
操作步骤如下:
第一步.查询出来那个job在运行,找个对应的SID字段
select * from dba_jobs_running--找到job对应的sid
&n
- Spring AOP详解
bijian1013
javaspringAOP
最近项目中遇到了以下几点需求,仔细思考之后,觉得采用AOP来解决。一方面是为了以更加灵活的方式来解决问题,另一方面是借此机会深入学习Spring AOP相关的内容。例如,以下需求不用AOP肯定也能解决,至于是否牵强附会,仁者见仁智者见智。
1.对部分函数的调用进行日志记录,用于观察特定问题在运行过程中的函数调用
- [Gson六]Gson类型适配器(TypeAdapter)
bit1129
Adapter
TypeAdapter的使用动机
Gson在序列化和反序列化时,默认情况下,是按照POJO类的字段属性名和JSON串键进行一一映射匹配,然后把JSON串的键对应的值转换成POJO相同字段对应的值,反之亦然,在这个过程中有一个JSON串Key对应的Value和对象之间如何转换(序列化/反序列化)的问题。
以Date为例,在序列化和反序列化时,Gson默认使用java.
- 【spark八十七】给定Driver Program, 如何判断哪些代码在Driver运行,哪些代码在Worker上执行
bit1129
driver
Driver Program是用户编写的提交给Spark集群执行的application,它包含两部分
作为驱动: Driver与Master、Worker协作完成application进程的启动、DAG划分、计算任务封装、计算任务分发到各个计算节点(Worker)、计算资源的分配等。
计算逻辑本身,当计算任务在Worker执行时,执行计算逻辑完成application的计算任务
- nginx 经验总结
ronin47
nginx 总结
深感nginx的强大,只学了皮毛,把学下的记录。
获取Header 信息,一般是以$http_XX(XX是小写)
获取body,通过接口,再展开,根据K取V
获取uri,以$arg_XX
&n
- 轩辕互动-1.求三个整数中第二大的数2.整型数组的平衡点
bylijinnan
数组
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
public class ExoWeb {
public static void main(String[] args) {
ExoWeb ew=new ExoWeb();
System.out.pri
- Netty源码学习-Java-NIO-Reactor
bylijinnan
java多线程netty
Netty里面采用了NIO-based Reactor Pattern
了解这个模式对学习Netty非常有帮助
参考以下两篇文章:
http://jeewanthad.blogspot.com/2013/02/reactor-pattern-explained-part-1.html
http://gee.cs.oswego.edu/dl/cpjslides/nio.pdf
- AOP通俗理解
cngolon
springAOP
1.我所知道的aop 初看aop,上来就是一大堆术语,而且还有个拉风的名字,面向切面编程,都说是OOP的一种有益补充等等。一下子让你不知所措,心想着:怪不得很多人都和 我说aop多难多难。当我看进去以后,我才发现:它就是一些java基础上的朴实无华的应用,包括ioc,包括许许多多这样的名词,都是万变不离其宗而 已。 2.为什么用aop&nb
- cursor variable 实例
ctrain
variable
create or replace procedure proc_test01
as
type emp_row is record(
empno emp.empno%type,
ename emp.ename%type,
job emp.job%type,
mgr emp.mgr%type,
hiberdate emp.hiredate%type,
sal emp.sal%t
- shell报bash: service: command not found解决方法
daizj
linuxshellservicejps
今天在执行一个脚本时,本来是想在脚本中启动hdfs和hive等程序,可以在执行到service hive-server start等启动服务的命令时会报错,最终解决方法记录一下:
脚本报错如下:
./olap_quick_intall.sh: line 57: service: command not found
./olap_quick_intall.sh: line 59
- 40个迹象表明你还是PHP菜鸟
dcj3sjt126com
设计模式PHP正则表达式oop
你是PHP菜鸟,如果你:1. 不会利用如phpDoc 这样的工具来恰当地注释你的代码2. 对优秀的集成开发环境如Zend Studio 或Eclipse PDT 视而不见3. 从未用过任何形式的版本控制系统,如Subclipse4. 不采用某种编码与命名标准 ,以及通用约定,不能在项目开发周期里贯彻落实5. 不使用统一开发方式6. 不转换(或)也不验证某些输入或SQL查询串(译注:参考PHP相关函
- Android逐帧动画的实现
dcj3sjt126com
android
一、代码实现:
private ImageView iv;
private AnimationDrawable ad;
@Override
protected void onCreate(Bundle savedInstanceState)
{
super.onCreate(savedInstanceState);
setContentView(R.layout
- java远程调用linux的命令或者脚本
eksliang
linuxganymed-ssh2
转载请出自出处:
http://eksliang.iteye.com/blog/2105862
Java通过SSH2协议执行远程Shell脚本(ganymed-ssh2-build210.jar)
使用步骤如下:
1.导包
官网下载:
http://www.ganymed.ethz.ch/ssh2/
ma
- adb端口被占用问题
gqdy365
adb
最近重新安装的电脑,配置了新环境,老是出现:
adb server is out of date. killing...
ADB server didn't ACK
* failed to start daemon *
百度了一下,说是端口被占用,我开个eclipse,然后打开cmd,就提示这个,很烦人。
一个比较彻底的解决办法就是修改
- ASP.NET使用FileUpload上传文件
hvt
.netC#hovertreeasp.netwebform
前台代码:
<asp:FileUpload ID="fuKeleyi" runat="server" />
<asp:Button ID="BtnUp" runat="server" onclick="BtnUp_Click" Text="上 传" />
- 代码之谜(四)- 浮点数(从惊讶到思考)
justjavac
浮点数精度代码之谜IEEE
在『代码之谜』系列的前几篇文章中,很多次出现了浮点数。 浮点数在很多编程语言中被称为简单数据类型,其实,浮点数比起那些复杂数据类型(比如字符串)来说, 一点都不简单。
单单是说明 IEEE浮点数 就可以写一本书了,我将用几篇博文来简单的说说我所理解的浮点数,算是抛砖引玉吧。 一次面试
记得多年前我招聘 Java 程序员时的一次关于浮点数、二分法、编码的面试, 多年以后,他已经称为了一名很出色的
- 数据结构随记_1
lx.asymmetric
数据结构笔记
第一章
1.数据结构包括数据的
逻辑结构、数据的物理/存储结构和数据的逻辑关系这三个方面的内容。 2.数据的存储结构可用四种基本的存储方法表示,它们分别是
顺序存储、链式存储 、索引存储 和 散列存储。 3.数据运算最常用的有五种,分别是
查找/检索、排序、插入、删除、修改。 4.算法主要有以下五个特性:
输入、输出、可行性、确定性和有穷性。 5.算法分析的
- linux的会话和进程组
网络接口
linux
会话: 一个或多个进程组。起于用户登录,终止于用户退出。此期间所有进程都属于这个会话期。会话首进程:调用setsid创建会话的进程1.规定组长进程不能调用setsid,因为调用setsid后,调用进程会成为新的进程组的组长进程.如何保证? 先调用fork,然后终止父进程,此时由于子进程的进程组ID为父进程的进程组ID,而子进程的ID是重新分配的,所以保证子进程不会是进程组长,从而子进程可以调用se
- 二维数组 元素的连续求解
1140566087
二维数组ACM
import java.util.HashMap;
public class Title {
public static void main(String[] args){
f();
}
// 二位数组的应用
//12、二维数组中,哪一行或哪一列的连续存放的0的个数最多,是几个0。注意,是“连续”。
public static void f(){
- 也谈什么时候Java比C++快
windshome
javaC++
刚打开iteye就看到这个标题“Java什么时候比C++快”,觉得很好笑。
你要比,就比同等水平的基础上的相比,笨蛋写得C代码和C++代码,去和高手写的Java代码比效率,有什么意义呢?
我是写密码算法的,深刻知道算法C和C++实现和Java实现之间的效率差,甚至也比对过C代码和汇编代码的效率差,计算机是个死的东西,再怎么优化,Java也就是和C